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Shape-Dependent Damping in Piezoelectric Solids 
RODERIC LAKES 

Absrruct-The  piezoelectric  contribution to the  mechanical l o s s  tan- 
gent  of  a  piezoelectric  solid  is  derived  from  its  complex  piezoelectric 
and dielectric  coefficients.  This loss depends  on  specimen  geometry as 
a  result  of  differences in effects related to  the  electrical boundary con- 
ditions.  Inclusion  of  a  positive  out-of-phase  piezoelectric  modulus re- 
sults in reduced values of the  predicted loss, which constitutes an im- 
provement Over earlier theories  which  predict losses exceeding  mea- 
sured  losses by a factor greater than two. 

T 
I .  INTRODUCTION 

HE PRESENCE of relaxation  effects  in  the  dielectric  and 
mechanical  behavior  of real materials is well known;  such 

effects can be described  by  complex  material  coefficients. 
Piezoelectric  relaxation  has  been  observed  in a variety of ma- 
terials,  including  ceramics [ l ] , [ 2 ]  , composites [3], and  bone 
[4]. Such  relaxation can be  represented  by  means of complex 
piezoelectric  coefficients or by  a  piezoelectric loss tangent 
[ l ] ,  [ 2 ] ,  [ S ]  . Piezoelectric  phase  angles  are  of  some  impor- 
tance  in  the  accurate  determination  of  the  piezoelectric  coeffi- 
cients of solids [6]. Mechanical  relaxation also occurs  in 
piezoelectric  materials and is an  important  consideration in the 
application  of  such  materials:  large  damping is considered  de- 
sirable in materials  used to  generate  short  acoustic pulses for 
flaw detection [7] ; small  damping (high mechanical Q )  is de- 
sirable in stable  resonators  and high power  transducers. 

In this  paper  the  connection  between  the  dielectric,  me- 
chanical,  and  piezoelectric  coefficients of a  material  which 
exhibits  relaxation is considered.  Clearly,  for an ideal  solid 
which  does  not  relax,  this  connection, in the  form of  a  piezo- 
electric  contribution  to  the  compliance,  has  been  established. 
For such  a  material,  in  the  linear  domain,  the  constitutive 
equations  are [S] 

Di = [dijkly ojk t [ K i j l g , , E j t  [ P i l o  AT (1) 

€i j  = [S i jk l l~ ,  T ukl [ d k i j ] ~  Ek [ " i j ] ,  AT. ( 2 )  

Here D is the  electric  displacement, d is the piezoelectric 
modulus  at  constant  temperature T, K is the  dielectric  tensor 
at  constant  stress U and  temperature T ,  E is the  electric  field, 
p is the  pyroelectric  coefficient  at  constant  stress, e is the 
strain, S is the  elastic  compliance  at  constant  field,  and a is 
the  thermal  expansion.  The  usual  Einstein  summation  con- 
vention  over  repeated  suffices is used.  In  a  material  described 
by  these  equations,  the  isothermal  compliance  measured  at 
constant  electric  displacement [S i jk l lD  differs  from  the corn- 
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pliance  measured  at  constant field [&jkllE [8] : 

iSijkllg - [ S i j k l l ~  = -dmijdnkl [ K m n l , ' .  (3) 

This difference  may  be  regarded  as  the  piezoelectric  contribu- 
tion to  the  compliance.  Piezoelectric  reactions also  influence 
the  apparent  stiffness of  a  solid,  under  conditions  in  which 
neither E nor D is constant 191. For materials whch   do  relax, 
i.e., for  which  the  coefficients in (1)  and ( 2 )  are  allowed 
to be complex, 

d* = d l .  - id!! 
Ilk Ilk ~ ] k  

K !  =K.'. - iK!! 
11 11 11 

S& =Sl;,, - (4) 

the  relationship  between  the  coefficients has not  been  clearly 
defined. One  can  consider  a  piezoelectric contribution to 
mechanical  relaxation:  experimental evidence for  such  a con- 
tribution in quartz  under  quasistatic  loading  has  appeared  at 
least as  early as 191 5 [IO]. A connection  between  dielectric 
loss and  mechanical loss in  piezoelectric  solids is to be  ex- 
pected on  heuristic  grounds in that  dielectric  relaxation  entails 
dissipation of electrical  energy; if this  energy  has  come  from 
the  piezoelectric  conversion  of  mechanical  energy,  then  me- 
chanical  relaxation  or  anelasticity  must  also  occur.  Several 
authors have  developed  theoretical  expressions  for  the  me- 
chanical loss tangent  tan S(') = ,''/S' in  terms of the dielectric 
loss tangent  tan t i ( k )  =K"/ , '  and  the  piezoelectric  coeffi- 
cients. A summary  of  these  expressions is shown  in Table I. 
The  results  differ as a  result  of  the  use of different  piezoelec- 
tric  coefficients  and  as  a  result  of  different  assumptions  made. 
The  latter  difference is the  more significant and will  be  con- 
sidered  in  Section IV. 

11. THE FIELD-DISPLACEMENT RELATION 
A. General Considerations 

The  relation  between  electric field and  electric  displacement 
is  given by  the  constitutive  equation (1). For a  nonpolar  solid 
under  isothermal  Conditions,  with Kii = kije, (eo is the  per- 
mittivity of free  space),  and with k* = k' - ik" and d* = 
d' - id" t o  describe  dielectric  and  piezoelectric  relaxation,  (1) 
and ( 2 )  become 

Di = d$k 0,k + [k; ] ,  eoEi. (5 1 
Eij = [S$klIE Ukl t d&Ek. (6) 

Suppose  that  the  specimen in question is electrically  isolated, 
i.e.,  free of  any  attached  circuit  element  of  finite  impedance 
and  that  it is subjected to  a  stress ull f 0 which is uniform 
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TABLE I 
______ 

I n v e s t i g a t o r ,  Reference Assumptions 
R e s u l t :   P i e z o e l e c t r i c   c o n t r i b u t i o n  to 

a n e l a s t i c   l a s s  

Hutsan, White (1962) 1111 Ul trason ic  wave. Sing le  2 li h 
r e l a x a t i o n   t i n e .  
d" n e g l e c t e d .  

Holland (1967) 151 P h a s e s   a r b i t r a r i l y   s e t  1 
t o  zero. With d". tan S l l l l  = ~ 

1111 k33 

Ogawa ( 1 9 6 9 )  [l?] Waves and v i b r a t i o n s .  
d" n e g l e c t e d .  L t r e a t e d   ( d : l / ~ l l ~ ; )  L'K;(~/.) 
as an adjus tab le  param- tan F = 

and lower  bounds.  Single 
d i e l e c t r i c   r e l a x a t i o n   t i m e .  

e t e r   e x c e p t   a t   i t s  upper (1 + L(K; - eC)) '  + ( ~ a / w ) '  

Yamguchi,  T a b h a s h i  l131 Re-onant v i b r a t i o n s .  2 

d "  n e g l e c t e l .  tan € = 7 tan E', g = d:K-' TK33g31 

Present  Studv  Subresonant  dvnanic  load- 
ing .  Geometry  and  d" 
included.   Thin  disk.  tan = tan 6:) ( d $ -  d;;l)- 2(l+A/k;3)d;lld;11 

Cylinder. E 1 Long Axi s :  
,$ = 1. Sphere: A = 2 .  

E 1 Surface: h = 0. 1111 ((1 + A/k;3)2 + tan2S :i)S;llleok;3 

Nomenclature 

C :  E l a s t i c  Modulus Tensor L :  Depolar iza t ion  Factor 6: Anelas t i c  Loss Angle 
d :   P i e z o e l e c t r i c  d Tensor m :  Conductivity Sk: D i e l e c t r i c  Loss Angle 
e:  P i e z o e l e c t r i c  e Tensor 
g :   P i e z o e l e c t r i c  p Tensor 

e ' P e r m i t t i v i t y  of Free Space 7 :  Qelaxat ion  Time 

k :   D i e l e c t r i c  Tensor 
3: Compliance Tensor ul: Angular frequency 

within the specimen  and  varies  sinusoidally  with  time: uI1 ( t )  = 
a(:) e i w f ,  ai, = 0 if i # 1 or j # 1. The  supposition  of  uniform 
stress  entails  loading  below  any  mechanical  resonance.  With 
these  assumptions we shall find  that  the field and the displace- 
ment  are  related  in  a way  which  depends on  the  electrical 
boundary  conditions;  therefore, several  specimen  geometries 
will  be  considered  separately. In all cases we assume that 
d311 # 0 and di , ,  = 0 if i # 3 and that  the 3 direction is a  prin- 
cipal  axis of kii, so that  both  the field and  displacement will be 
in  the 3 direction. 

B. The Thin Plate 
Consider  a  thin  plate  of  piezoelectric  material  such that  the 

flat  surfaces  are  perpendicular  to  the 3 axis.  From Gauss's 
law,  the  boundary  condition  on  the  electric  displacement is 

charge on 

- ~ z - r m a ~ l  = free; Zfree is the  density of  free 

the  surface. For the  thin  plate  geometry, D E m a 1 '  = 
0. Now the charge  which  accumulates on  the  surface  as  a re- 
sult  of  conductivity or modes of  dielectric  relaxation  which  do 
not involve  dipole rotation,  may  be  regarded as free  charge 
[14]. Such  a  view,  while  conceptually  reasonable,  leads to 
difficulties  in  gedanken  experiments  involving  measurement of 
the  electric field in a  plate  with  constant d 'and finite  con- 
ductivity. As a  result of such  experiments, we conclude  that 
in the present  setting,  free charge  must  include only charge 
that  is  not  associated  with processes  included  in the  definition 
of D. So if k" contains  contributions  from  dc  conductivity as 
well  as  dielectric  relaxation,  the  free  charge is zero.  Then  in- 
side the  plate, 

D3 =O, (7) 

as in  the case  of  ideal  crystals with  zero  conductivity [9]. 

C The Long Cylinder 
The 1 axis  in  this case is the cylinder  long  axis; the 3 axis is 

orthogonal to the  cylinder  long  axis.  The  electric  displace- 
ment will  be  in  the 3 direction  and  will be uniform, so 

div D = 0 within  the  solid.  The  volume  charge  density van- 
ishes, so Laplace's equation  may be  used.  In  polar  coordinates 
in the 3-2 plane,  the  solutions are  based on cylindrical  har- 
monics  and have the  form 

Etut = A(a2/?) sin 0 (sa) 

ELut = A (a2/r2) COS 0 

E$ = Ein sin 0 @c) 

~ i : ,  = - E ~ ,  cos e ( 8 4  

= A  (e0a2/rz) sin e @e) 

DAUt = A  (eoa2/?) cos B W )  

Dien = C sin B (W 

= - c c o s  e ,  @h) 

in  which a is the radius of the  cylinder. With the  boundary 
condition  on  the  normal  component of electric  displacement 
and (8f)  and  (8h), 

- C COS e - A e ,  COS e = - Z free (9) 

the  boundary  condition on  the  tangential  component of the 
electric field in  the  quasielectrostatic  approximation is E::) = 
E:'?,; with  this  and  (8a)  and  @c),  one  obtains A = Ei,. With 
(71, 

- dC/dt - e,dEin/dt = 0. (10) 

Since the field  and  displacement  have  a  sinusoidal  time 
dependence, 

0 3  =-E3eo, (1 1 )  

within the  cylinder of piezoelectric  material. 

D. The Sphere 

interior  of  a  solid  sphere  would  be  a challenge to  the experi- 
Although  the  application of a  uniform  uniaxial  stress  to  the 
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mentalist, we consider  this  situation in order  to  examine  the 
effects  of  geometry  on  depolarization.  The  solution  for the 
sphere,  consisting of appropriate zonal harmonics  which satisfy 
the  boundary  conditions,  parallels  that  for  the  cylinder; for 
example E h t  = A (a3/?) sin 0 .  The field inside the  sphere is 
uniform. Withn  the piezoelectric  sphere, we obtain 

D3 = -E3eoA. (1 2) 

The  field-displacement  relations  have  been  obtained  from 
the  electrical  boundary  conditions at the  surface  of  the solid 
and  from  the  supposition  that  the field vanishes infinitely far 
from  the  solid,  which is a consequence of the  assumption of 
an electrically  isolated  specimen.  It is not even  necessary that 
the solid be piezoelectric to  obtain  these  relationships;  equa- 
tions  similar to (12) can be obtained  for  a  permanently  polar- 
ized sphere or for  a  permanently  magnetized  sphere [15]. For 
an ordinary  dielectric  which is electrically  isolated,  the  equa- 
tions  hold trivially with E = 0, D = 0. 

111. THE  ANELASTIC Loss TANGENT 
A.  Derivation of Loss from General D-E Relation 

In  this  section  we  develop  an  expression  for  the  piezoelectric 
contribution  to  the  anelastic loss tangent  in  a  solid  subjected 
to  subresonant, sinusoidal  loading. Suppose  that,  within  the 
solid,  the  electric field and  displacement  are  uniform, parallel, 
and  related  by  the  following: 

D3 = -E3eoA. (1 3) 

The  quantity A will be left  unspecified;  however,  note that  for 
the  thin  plate,  cylinder,  and  sphere,  respectively, A is 0, 1 ,  2. 

Let the solid obey  the  constitutive  equations (5) and (6), i.e., 
let it  exhibit  dielectric  and  piezoelectric  relaxation.  The me- 
chanical,  dielectric,  and  piezoelectric loss tangents  are  defined 
as follows: 

tan 6 = d,!ik 

with  no  summation  on  the  repeated  indices.  Combining (13) 
and ( 5 ) ,  recalling the  assumptions  made  earlier, 

Substituting  this  in (6), collecting  terms,  and  simplifying,  we 
obtain 

(d& - d!&) (1 + A/k&) + 2dLlldill tan 63, 
eok$3 ((1 + A/k;,)' + tan' St3) 1 

r 

This  may  be  written as 

in  which  the  compliance in the  brackets is what is measured in 
the  specific  geometry  under  consideration. This  compliance is 
not  the  compliance  at  constant field wh.ich appears  in  the  con- 
stitutive  equation (6); for  a  particular  specimen  geometry, 
neither  the  field  nor  the  electric  displacement will be  constant 
in  general;  they  are  determined  by  the  geometry  and  therefore 
do  not  appear as independent variables in (1 5). These state- 
ments  apply, of course?  only  tn Ihe situation  considered  here: 
dynamic  mechanical  loading  with  no  external  electrical 
perturbation. 

The  term  subtracted  from S'  in (1 S )  may  he thought of  as 
the  piezoelectric  contribution  to  the  storage  compliance:  the 
presence  of  piezoelectric  coupling  reduces  the  compliance  and 
causes  the  material to  appear  stiffer.  If'we consider a flat plate 
specimen, A = 0; and if there is no dielectric o r  piezoelectric 
relaxation,  tan S';3 = 0, dlll = 0. Since A = 0 implies that  the 
electric  displacement is zero, we obtain 

which is equivalent to (3) in  which the sum has  collapsed into 
a single term as a result  of  the  assumptions  made  in  obtaining 
(15). The  results,  therefore,  reduce to  those of the classical 
theory  in  which  no losses or piezoelectric  phase  angles  occur. 

The  term  added  to S" in ( 1  5) represents a piezoelectric  con- 
tribution  to  the loss compliance.  The  presence  of  piezoelec- 
tricity  and  dielectric  relaxation generally  increases the me- 
chanical  energy loss. ' f ie  piezoelectric  contribution to  the 
anelastic loss tangent,  obtained by  dividing the above term  by 
S', is 

(1 7) 

This is compared  in  Table  I  with  the  results  of  other investi- 
gators; the  comparison is discussed in  Section  IV. S' in this 
expression is the storage  conlpliance  for  the  geometry in ques- 
tion;  this  differs  from  the  constant-field  compliance 
which  appears  in the  constitutive  equation, as shown in (15). 
In cases of  weak  coupling  the  difference  between  these  com- 
pliances  is  small. 

The  effect of the  piezoelectric  relaxation  term d" is much 
more  pronounced in the  contribution  to  the anelastic  relax- 
ation [(17) and  the  term  containing @'')E in (15)] than  in  the 
contribution to  the storage  compliance.  This may  explain  why 
the classical theory  of  linear  piezoelectricity [e],  [g],  [l61 
which  addresses  elastic  effects  in the absence of dissipation, is 
accurate  for  this type  of  problem  (prediction of piezoelectric 
stiffening)  despite  the  neglect of piezoelectric  phase  angles. As 
an example,  consider  a  material  for  which  the classical cou- 
pling  coefficient  in  the  thin  plate  geometry is (' = 0.5. Then 
the  piezoelectric  contribution  to  the  storage  compliance repre- 
sents  a  factor two decrease in the  compliance. If dielectric re- 
laxation  tan Sk = 0.03 is introduced,  then  the  piezoelectric 
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contribution  to the  compliance is reduced  by  about 0.1 per- 
cent. If piezoelectric  relaxation  tan Sd = 0.03 is introduced, 
then  the  piezoelectric  contribution to the  storage  compliance 
is increased  by 0.1 percent.  Suppose  now  that  the  anelastic 
loss tangent  at  constant field is (tan &‘)E = 0.03. Then  with 
“pure”  piezoelectricity  alone,  the loss at  constant displace- 
ment  for an isolated  thin  plate is (tan &’), = 0.06, since  the 
storage  compliance  in  the  denominator  has  been  reduced  by 
the  piezoelectric  reaction. If dielectric loss tan 6 k  = 0.03 is 
again introduced,  then  (tan &‘), = 0.09, a  50-percent increase 
over the case  for  zero  dielectric loss. If piezoelectric  relax- 
ation,  tan bd = t0.03 occurs, then we  have  (tan &’), = 0.03. 
The  anelastic  loss,  therefore, is much  more sensitive to  vari- 
ations in the  dielectric  and  piezoelectric loss tangents  than is 
the  storage  compliance. 

B. Generalized Cbupling Coefficient 

terms  which  contain  expressions  which  resemble the piezcs 
electric  coupling  coefficient.  Define  for the  thin  plate 
(A = 0), the  following  dimensionless  quantities: 

The  expression  on  the right in (17) can  be  decomposed into 

and 

in  which we note  that Re [d*2] = d” - drrz and -1m [d*2] = 
2d‘d“. 

Then  for  the  thin  plate, we obtain  from (1 5 )  

If  the  piezoelectric  coupling is weak, so that 2 (S’)E, then 
(21 j represents  the  piezoelectric  contribution  to  the loss tan- 
gents, see also (17). Even in the  weak-coupling  case,  piezo- 
electric  losses  may  account  for  most or all of the  observed 
mechanical loss; for  example,  in  photoconductive  cadmium 
sulfide  the  background  mechanical loss  (tan &‘)E is very  small 
[17]. For strong  coupling,  the  contribution  to  the  storage 
compliance  becomes  appreciable,  and (15) may  be  used di- 
rectly to calculate  the loss tangents. If we have d” << d’, 
then K :  = 2 ~ ;  tan S d ,  a  considerable  simplification. 

In  the  absence of all relaxation (k” = 0, d” = 0, S; = 0), K :  

reduces to  the coupling  coefficient $gl l  = dgll /(Sllll) 
in the  traditional  theory [18],  [l91 ; K :  vanishes. If dielectric 
relaxation  occurs, K :  represents  the  ratio of the  maximum 
energy extractable  from  the  material in electrical  form to the 
maximum  energy  input in mechanical  form, as in  the  tradi- 
tional  theory.  Since  the  dielectric  coefficients  depend  on fre- 
quency,  the  rate  of  energy  extraction  must  correspond  to  the 
frequency of mechanical  excitation, if this  agreement is to be 
obtained. If dielectric,  piezoelectric,  and  anelastic  relaxation 

E 

all occur,  this simple  energetic  interpretation  of K ;  is no longer 
valid. The  coefficient K : ,  which is related to  the  out-of-phase 
piezoelectric  coupling,  can  be  either  positive or negative  de- 
pending on  whether d” is positive or negative.  Since strain  and 
electric  field  are  nonconjugate  variables,  there is no theoretical 
energetic  constraint on  the sign of d” as there is on the sign 
of k” and S“ [20] ; experimentally,  both positive and negative 
d” have  been  observed [20] .  These  considerations, as well  as 
the discussion  in  Section 111-A, cast doubt  on  the validity of 
an interpretation of d” as  an  imperfection in the  conversion of 
energy [ S ] .  

Both K :  and [ill are bounded  from  above  by  unity,  there- 
fore the piezoelectric  contribution to  the anelastic  loss  tan- 
gent of  a  thin  plate  subjected  to  subresonant  dynamic  loading 
can be no greater  than  the  dielectric loss tangent,  provided 
that d” 2 0. The  actual  anelastic loss  observed  may  be  greater 
than  the  piezoelectric  contribution, since  a  variety  of loss 
mechanisms  may  contribute to the  total loss. 

The  coupling  coefficient,  both in the  relaxation-free  tradi- 
tional  theory [ 191 and  in  the  present analysis,  will depend on 
the  geometry  and on the  mode of  vibration. For subresonant 
mechanical  loading  of  a  specimen  with A = 0, 1, or 2 ,  define 
A-dependent  coefficients: 

which  reduce to (1 8) and (1 9) respectively for A = 0. Then 

[[Ko(A)]’(l + A / k ’ j t  [K~(A) ] ’  

Then as A increases,  which represents increasing  electric flux 
leakage out of the  specimen,  the  piezoelectric  contribution to  
the loss  compliance  decreases.  The  contribution  to  the  storage 
compliance  also  decreases  with  increasing A, provided that  the 
dielectric loss is very  small; if the dielectric  loss  tangent is 
large, then  the  contribution  to  the  storage  compliance  may 
first  increase in magnitude,  then decrease with  increasing A. 

IV. DISCUSSION 
A.  Comparison with Other  Results 

The  results  obtained in the present  study  and  results  ob- 
tained  by  other  investigators  are  compared  in  Table I, with 
salient  assumptions  made in each case. Kyame [21] and  later 
Hutson  and White [ 11 ] considered  plane  ultrasonic  waves  in 
an  infinite  domain of piezoelectric  semiconductor,  with  a 
single dielectric  relaxation  time  due to  conductivity.  The 
latter  authors  considered  nonlinear  terms  associated  with semi- 
conductors  which  are  not  included  in  the  equation in Table I .  
For a single relaxation  time,  the  dielectric loss tangent in the 
present  study  reduces  to  tan = W/( 1 t U’?). Hutson 
and White’s results  should  be  compared  with  the  present re- 
sults  for  the t h n  plate, since  in both cases there is no leakage 
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of  electric  flux.  The  results  differ  as  follows: 1) Hutson  and 
Wlute’s results contain  no  effects  due  to  piezoelectric relax- 
ation d” ,  since d” was not  considered. 2 )  When converted to  a 
form  containing  the  piezoelectric d coefficients,  these  results 
contain  the  modulus Cin  the  numerator,  which  differs  from 
the inverse of the  compliance  found  in  the  present  results. 
This  difference arises as a result  of  the  constraint on Poisson 
contraction  in  the plane wave configuration. 3) The  predicted 
complex  modulus  has  the  form C’ - iC” in [ 1 1 , I I .  151 . This 
form  entails  energy  gain,  which  does  not  occur  in passive ma- 
terials.  The sign reversal apparently  comes  from  the  choice of 
a real dielectric  constant  and the associated  boundary 
conditions. 

ization  effects  due  to  differences  in  specimen  geometry 
were considered.  The  depolarization  factor L ,  considered 
to  be  real, is related to  the  quantity A in the  present  study 
by L = 1/(A t 1) eo. The  quantity L is analogous to  the 
demagnetization  factor  considered  in  magnetic  studies. 
Ogawa treated  l/e,  (for  a  thin  plate)  and 0 (for  a  long  rod). 
If the  present results are  specialized to  the case  of the  thin 
plate,  with no  piezoelectric  relaxation,  and  with  a  single 
relaxation  time,  then  they  are in agreement  with Ogawa’s 
results  for L = l/e,,. Ogawa modeled  experimental  results 
on  photoconductive  cadmium  sulfide  with his theory;  by 
treating L as an  adjustable  parameter, he  obtained  qualita- 
tive agreement  with  experiment [ 171. However, for large 
values of conductivity  the  predicted  anelastic loss substan- 
tially exceeded  the  measured loss. One  would  expect  the re- 
verse to be  true, since  causes other  than  piezoelectric  cou- 
pling  can only  add positive increments  to  the  anelastic loss  in 
a passive material.  The  presence of a  finite d”, neglected  by 
Ogawa,  could account  for  this  discrepancy. Ogawa  also  mea- 
sured the losses  in cadmium  sulfide  crystals of different  shapes 
[ 171 . Long  slender  crystals  exhibited  smaller  anelastic  losses 
than  plate-shaped  ones,  as  predicted by Ogawa’s theory [ 121 
or by  the  present  results. A quantitative  comparison  cannot 
easily be made in either  case, since the  specimen  shapes used 
are not  amenable to a  straightforward  computation of the 
depolarization  factor L or of A. 

hashi [ 131 are  equivalent to  the  present  results,  when  the 
latter are  specialized to  the case  of the  thin  plate,  with  no 
piezoelectric  relaxation,  and if the  dielectric loss is small, i.e., 
tan’ 6 k  << 1. These  authors also compared  their  theoretical 
expression  with  experimental  data  and  observed  that  the cal- 
culated  anelastic loss exceeded the measured loss by more 
than  a  factor  two  in  materials  with  a relatively  large loss. 
Again,  this type of  discrepancy is paradoxical given the  fact 
that  the  material is passive. In this  case, both  the neglect  of 
d” and  the neglect of depolarization  effects  (the  specimens 
were  actually  long  prisms,  not  thin  plates)  may  have  con- 
tributed  to  the  discrepancy. 

The  expression  obtained  by  Holland  [6]  for  the piezoelec- 
tric  contribution to  the anelastic  loss,  contains d” explicitly. 
A crucial  assumption in the  analysis  leading to this  expression 
is that  the phase  angle between  stress  and  electric  field  may be 
set  equal  to  zero  since  these  quantities are independent vari- 

In  Ogawa’s study [ 121 , d” was  also  neglected, but depolar- 

Except  for  the  factor 71, the  results of Yamaguch  and  Taka- 

ables. In the  framework of the  present  study, if we eliminate 
D from (5) by  means of one of the field-displacement  relations 
(7), (1 l), or  (12), we observe that  the  phase angle between 
stress  and  electric field does  not  in general  vanish.  It is con- 
ceivable that this  phase  angle could be made  to vanish  by 
simultaneously  applying an appropriate stress and  electrical 
signal; however,  the  stimulus  would have to be  different for 
each  specimen  geometry.  It is not clear what  the  meaning of 
an “anelastic  loss”  measured  this  way  would  be. 

As discussed  earlier in Section 11, it is conceptually reason- 
able to regard  as  free that charge not associated with  dipole 
motion.  Such  a view  is taken  in  treatments  of lossless dielec- 
trics [l61 . However,  when  this assumption is made in the 
analysis of lossy  piezoelectrics,  a  term  containing k” appears 
in  the D-E relation  for A = 0 (zero  flux leakage), both  in  the 
study  by  Hutson  and White [ 1 l ]  and  in  a  preliminary  report 
by  the  present  author [ 141 . With this D-E relation  and  a  con- 
stitutive  equation  with real D ,  a  sign  reversal is  obtained  which 
implies amplification  rather  than  damping  in  the  former case. 
This D-E relation  and  a  constitutive  equation  with  complex D 
gives  rise to deviations  from  the  true losses for large  dielectric 
loss in  the  latter case. The  preliminary  results in [l41 approxi- 
mate  the  anelastic loss if all phase  angles  are  small; the salient 
conclusions,  i.e.,  that  anelastic  losses  in  piezoelectric  media 
are geometry  dependent  and can be reduced by d”, are un- 
changed by  the present study.  The  meaning  of  free charge  in 
the  boundary  conditions is not  apparent in the  results  of 
analyses of losses; this  meaning is elucidated by  certain 
gedanken  experiments. 

B. Significance 
The  expressions  obtained above permit  the  calculation of 

the  effective  mechanical loss tangent  and  compliance of 
piezoelectric  bodies  with  certain  shapes, given the  constant- 
field coefficients  in  the  constitutive  equations.  Such  expres- 
sions  are  expected to be useful in cases for  which  the  per- 
formance  of  a  given  material,  used in a  variety of geometrical 
configurations, is to be  predicted.  The  piezoelectric phase 
angles  can  have  a  significant  effect on  the  results of  calcula- 
tions of ths   o r  similar nature. Neglect of these  phase  angles 
may  account  for  some of the  discrepancies  which  have  ap- 
peared in the  literature. For example, Desilets er al. [22] pre- 
sented  a  design  method,  supported  by  careful  experimenta- 
tion,  for  efficient,  broad-band,  thin disk  transducers. Inter 
alia, these  authors observed  a round-trip  insertion loss of 6.5 
dB at  midband  in  a  matched  lead  metaniobate  transducer, 
compared  with  a  predicted  insertion loss of 1 dB;  various  ex- 
perimental  nonidealities  were  suggested as possible  causes for 
the difference. In light of  the  present  study,  piezoelectric re- 
laxation  may be  considered as a  possible candidate  for  a cause 
for  this  type of  discrepancy.  In  addition,  both  depolarization 
effects  and  piezoelectric  relaxation as  considered  in  the  present 
study  provide  mechanisms  whereby  the  paradoxical  overesti- 
mates of mechanical  losses in earlier treatments can be 
corrected. 

The  expressions  obtained in the  present  study  refer to  a 
configuration in which  the  electrically  isolated  specimen is 
subjected  to an  oscillatory  stress  history  at a frequency well 
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below  any  resonance. Such  a  configuration  may  be used in 
studies of  polymers [23] or in  piezoelectric  materials  for 
which  a  sharp  resonance  cannot be obtained or for  which 
data  are to  be  obtained over  several  decades  in the  low  fre- 
quency  domain [3], [20]. The  configuration  approximates 
the  behavior  of  a  crystal  which is used to  receive ultrasonic 
waves at a  frequency below any  crystal  resonances, if the 
amplifier  attached  to  the  crystal has a  sufficiently  high im- 
pedance.  Although the results  obtained  here  do  not  apply  di- 
rectly to cases in  which  electrical  excitation  is  applied to  the 
material, it is expected  that  the  out-of-phase  piezoelectric 
modulus d“ will affect  the  behavior  of  piezoelectric  materials 
in  those  cases  as  well. 

V. CONCLUSION 
Expressions  have  been  derived  for  the  piezoelectric  con- 

tribution  to  the  mechanical loss of a  solid,  with  specimen 
geometry  and  electrical  boundary  conditions  considered ex- 
plicitly.  The  presence  of  positive  out-of-phase  piezoelectric 
modulus  has  the  effect of reducing  the  predicted loss; piezo- 
electric  phase  angles  have  much  more  effect on the loss than 
on  the  storage  compliance of  a solid. The  mechanical loss of a 
piezoelectric  body is found  to be dependent on its  shape. 
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