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Abstract

Open cell polymer foam exhibits both an intrinsic micro-vibration frequency and a cut o↵ frequency
associated with resonance of the cell ribs. Compression of the foam causes regions of local buckling of
ribs. Incipient buckling gives rise to negative sti↵ness and enhanced amelioration of waves. Transmitted
wave amplitude is reduced by compression below and near the cut o↵ frequency.
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1 Introduction

In cellular polymers, the micro-vibrations of structural elements influence the propagation of acoustic waves
by dispersing the waves and producing a cut-o↵ frequency. The cut-o↵ frequency occurs because the struc-
tural resonance frequency of the rib elements limits the maximum frequency of waves that can pass through.
Structural resonance may be modified by changing the structure itself or by an imposed strain.

Wave disturbances over a wide frequency range can be ameliorated by material damping [1]; for example,
polymer foams are viscoelastic and provide substantial material damping [2]. Wave disturbances can also be
reduced by local structural resonance, or by negative sti↵ness inclusions [3]. As for acoustic waves, layered or
other periodic structures can give rise to stop bands of near zero wave transmission over ranges of frequency.
The frequency usually corresponds to a sound wavelength on the order of the structure size. For tungsten
wires 0.127 mm in diameter spaced 0.3 mm in aluminum alloy, the stop band begins at about 5.5 MHz [4].
For steel rods embedded in epoxy [5], a spacing of 6 mm gives a stop band from about 120 kHz to almost 300
kHz in the ultrasonic regime above 20 kHz. One di�culty with such an approach is that the attainable stop
band frequencies are in the ultrasonic range; to block acoustic or sub-audio waves, the required structure size
is prohibitively large to be considered in the context of materials. Cut o↵ frequencies in the acoustic range
were observed in flexible polymer foam of cell size about 1 mm to be about 2.5 kHz [6]. Ribs in polymer
foam are bend-dominated so their resonance frequency corresponds to a wavelength These materials are
compliant and they can be used as sound absorbers or ba✏es, but they not appropriate to be used as sti↵
structural materials. If one seeks acoustic wave blocking in sti↵ materials, genuinely macroscopic length
scales are required. For example, in periodic shaped hard plastic rods 6 m long with shape memory inserts,
similar cut-o↵ frequencies of around a kilohertz were obtained [7].

Local resonances can give rise to negative e↵ective mass density in composites consisting of inclusions
of coated spheres, for example, with a core of lead surrounded by rubber, in a sti↵ light matrix [8] [9]. As
the material is oscillated above the resonant frequency the dense spheres move out of phase with the input.
Such an approach can block waves in certain frequency ranges as well.

In the present research, micro-buckling of cell ribs is used to obtain regions of incipient negative sti↵ness
[10], with the aim of reducing wave transmission.
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2 Experimental Methods

The foam was Z60Q open celled, 60 pores per inch, reticulated polyester foam acquired from Foamex In-
dustries [11]. This foam is commonly used for filtration applications. An optical micrograph of the foam is
shown in figure 1. The density is low, about 0.04 g/cm3. That corresponds to 96% porosity. Test specimens
were cut from a large block using a hot wire cutter. For attenuation measurements, and for detailed study of
transmitted waveforms, two specimens were studied, a 14 by 2.2 by 2.4 cm specimen and a 6.2 by 2.2 by 2.4
cm specimen. A third specimen consisted of an air gap without foam, to discern the contribution of sound
through the air. This is necessary because the foam is of low density and contains much air.

Figure 1: Optical micrograph of the foam studied in this work. The scale bar is 3 mm long.

The foam was studied by sending tone bursts of longitudinal waves through bar shaped specimens of
foam. The waves were generated with a one inch diameter piezoelectric bender transducers with the input
electrical signal produced by a Tektronix AFG3051C function generator. An identical bender was used to
pick up the response on the other side of the specimen. The bender natural frequency was about 3 kHz,
above the range required. Input and response were monitored with a Tektronix TDS 3012 digital phosphor
oscilloscope. Small loudspeakers were initially tried as transducers but they did not generate su�cient signal
at the higher frequencies. Phase velocity was found by measuring the time delay between sending and
receiving the signal for a specimen 18.5 cm in length. The time delay from the leading edges of input and
received waveforms was used to infer velocity. Attenuation was found by measuring the amplitude of the
response of di↵erent lengths of specimens at the same frequency. The amplitudes were fit to the attenuation
model, A1 = A0 exp (�↵z) where z is the length of the specimen, A1 is the measured amplitude, A0 is a
scaling coe�cient and ↵ is the attenuation.

The shorter specimen was compressed 20% between the transducers to test the e↵ects of buckling of
ribs. This specimen was short enough that compression resulted in local micro-buckling of the foam and not
column buckling of the specimen. The micro-buckling resulted in bands of heterogeneous deformation in the
foam. In analysis of waveforms, the frequencies of the responses were found by expanding the horizontal
scale of an area of interest and measuring the period of the sinusoid. A rubber specimen was also tested to
exclude possible instrumental artifacts that could mimic a cut o↵ frequency.
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3 Results and discussion

Figure 2: Below the cut o↵ frequency, the phase velocity increases with frequency.

Below the cut o↵ frequency, the phase velocity increases with frequency, shown in figure 2. Such an increase
is expected in a viscoelastic material such as a polymer foam. The Young’s modulus inferred from the wave
speed at 300 Hz and the density is 290 kPa. At the frequencies used, the wavelength is much larger than
the specimen width, so the wave velocity is the bar velocity. The modulus under quasi-static conditions will
be lower as a result of the frequency dependence of modulus. The attenuation of the foam at 300 Hz it was
2.9 m�1; at 500 Hz it was 3.9 m�1, and at 700 Hz was 4.2 m�1 . At 500 Hz, below the cut-o↵ frequency,
the signal passes through the specimens at the forcing frequency, shown in figure 3. After the input, the
specimen rings out at the natural frequency of ribs, at 1.0 kHz. The tone burst contains Fourier harmonics at
other frequencies in addition to the driving frequency, hence the response at the micro-resonance frequency.
The e↵ect of compression was to modestly decrease the response at the driving frequency.
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(a) Long Specimen, 14 cm

(b) Short Specimen, 6.2 cm

(c) Compressed Short Specimen

Figure 3: Wave transmission results at 0.5 kHz. Compression modestly decreased the response at the driving
frequency.

The cut-o↵ frequency of the foam was found to be 1 kHz. Rubber, by contrast, exhibited no cut o↵
frequency. In figure 4 the input and response of the specimens is shown for a forcing frequency of 1 kHz.
Ringing at that frequency persists after the end of the pulse. The received signal was considerably stronger in
this case than at the other frequencies, as indicated by the di↵erence in scale on the right. The least amount
of signal passes through the compressed specimen. This has the shortest distance for waves to pass through,
so one might expect a greater transmission; however the compression results in micro-buckling of ribs which
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gives rise to instability, hence a region of negative incremental sti↵ness. This region helps to block the waves.
The transmission of signal through the air is shown in these plots as well and its amplitude increases with
frequency, however, it is small compared to the signal through the foam in all cases. Similar behavior was
observed at 0.8 kHz and 1.2 kHz. Di↵erent compressive strains were tried; transmitted wave amplitude
decreased with compressive strain up to about 14%, then was constant with increasing compression.

(a) Long Specimen, 14 cm

(b) Short Specimen, 6.2 cm

(c) Compressed Short Specimen

Figure 4: Wave transmission results at 1 kHz. Ringing due to micro-vibration occurs at the material’s
characteristic frequency. Compression results in reduced transmission.
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Above the cut-o↵ frequency, the response is not at the forcing frequency, rather it comes through at 1
kHz, shown in figure 5. There is no observed response at 1.5 kHz for any of the specimens. The response
is measured to be at 1 kHz for all specimens. The compressed specimen displays a beat phenomenon in the
waveform. The associated di↵erence in frequency was too small to be detected by measuring the periods of
the waves. The transmission is similar between the compressed and uncompressed specimens except that
the response decays faster for the compressed specimen. Compression modestly reduces the amplitude of
the 1 kHz response, introduces a beat phenomenon into the 1 kHz ringing after the pulse and increases the
damping of the ringing.
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(a) Long Specimen, 14 cm

(b) Short Specimen, 6.2 cm

(c) Compressed Short Specimen

Figure 5: Wave transmission results with 1.5 kHz input. There is no response at 1.5 kHz. The response is
measured to be at 1 kHz for all specimens.

With an input at 2.0 kHz, shown in figure 6, the response of the uncompressed specimens was measured
to be at 1.0 kHz. The response of the compressed specimen was predominantly at 2.0 kHz and there was
more signal transmitted through the compressed specimen compared to the uncompressed.
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(a) Long Specimen, 14 cm

(b) Short Specimen, 6.2 cm

(c) Compressed Short Specimen

Figure 6: Wave transmission results with 2.0 kHz input.

The 1 kHz micro-vibration response is due to the material not a length resonance because the same
frequency is observed in specimens of di↵erent length.

The physical cause of a micro-vibration frequency and a cut o↵ frequency in foam is resonant vibration
of ribs comprising the foam [6]. The wavelength of waves in the foam at 1 kHz is 90 mm, compared with
the cell size, 0.42 mm. The reason for the di↵erence is that ribs in polymer foam are bend-dominated. So
their resonance frequency is much lower than that of a stretch dominated structural element. An elementary
model of the foam rib vibration can account for the order of magnitude of the cut o↵ frequency. Cut o↵
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frequencies and wave dispersion can also be interpreted in the context of generalized continuum theories in
which the points of the continuum not only translate as in classical elasticity or viscoelasticity but rotate
and deform as well [12].

Wave dispersion in periodic structures is well known [13], originally in the context of crystal lattices. At
su�ciently high frequency in elastic solids, the wave speed decreases with frequency. A similar phenomenon
is obtained in generalized continua [12].

The reason for the increase in wave speed with frequency in figure 2 is as follows. The damping tan �
inferred from attenuation ↵ via ↵⇡ !

2v tan�, is 0.26 at 300 Hz, 0.22 at 500 Hz and 0.17 at 700 Hz with v
as the wave velocity and ! as the angular frequency, with ! = 2⇡f in which frequency is f . The change
in modulus over a factor ten in frequency based on tan � = 0.2 is a factor of 1.34. That assumes a broad
distribution of relaxation times and no internal resonances: E(f) / fn with � = n⇡/2. The change in
modulus over a factor ten in frequency based on the dispersion in velocity in figure 2 is only a factor 1.18.
The di↵erence is attributed to the softening e↵ect associated with the internal resonances in the material.
In a purely elastic material with internal resonances, such softening gives rise to a decrease in wave speed
with frequency [12] [13]. In viscoelastic materials such as the foam, this is compensated by the increase in
modulus with frequency associated with damping.

The ring-down of micro-vibration of ribs corresponds to an e↵ective damping tan � = 0.035. This
is considerably smaller than damping associated with wave attenuation or wave dispersion. The internal
degree of freedom revealed by rib vibration evidently experiences less damping than the bulk longitudinal
wave.

As for the e↵ect of regions of buckled ribs, the high damping observed in other negative sti↵ness systems
arose from a snap through e↵ect in the vicinity of the buckling transition [3]. The snap e↵ect is not as abrupt
in a high damping material such as the foam, as it is in a low damping material. Therefore the e↵ect of the
buckled regions is modest.

4 Conclusion

Micro-vibrations and a cut o↵ frequency were observed in open celled foam. Uncompressed foam had a cut
o↵ frequency of 1 kHz. Below the cut-o↵ frequency, the foam behaves at a viscoelastic material, with phase
velocity increasing with frequency. Near and above the cut-o↵ frequency, the foam exhibits local resonance
and does not behave as a classical continuum.

Compared to the unstrained specimen, less signal was transmitted through the strained specimen below
the cut-o↵ frequency and more signal was transmitted above cut-o↵ frequency.
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