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ABSTRACT

Thermodynamical requirements on elastic-plastic shock waves are investigated to explore the range of
validity of, and provide rigorous substantiation for, the previous shock analyses of Drugan and coworkers.
These studies assumed (implicitly) that during shock passage, a material particle’s stress and deformation
history is well-approximated by its history during passage of a smooth wave, and that the material response
is purely mechanical. We show precisely the conditions under which these analyses are valid. Courant and
Friedrichs’ [(1948) Supersonic Flow and Shock Waves (Third Printing: 1985). Springer, Berlin] analysis of
the order of entropy effects for weak one-dimensional shocks in mechanically conservative fluids is extended
to shocks in general three-dimensional large deformations in a material of arbitrary constitution. Specifically,
we prove that the change in thermodynamic state across a suitably-chosen smooth wave coincides with
that across a general shock up until third order in material time rates of fundamental field variables, at
which point contributions from the shock itself first appear. This result, which is valid even if entropy
generation (due to mechanical dissipation) occurs at first or second order, corrects the common mis-
conception that a shock may be approximated by a smooth wave only if the entropy generation is small.
We further prove that for the special class of shocks that propagate under steady-state conditions with
non-rotating reference configuration images, a smooth wave can be constructed whose change in ther-
modynamic state coincides with that across the shock through a// orders of field variable rates. That is, a
smooth wave is a potentially exact model of a shock in this class. Having legitimized the representation of
a shock by a smooth wave, a large deformation statement of the maximum plastic work inequality is
integrated across the shock to give general thermomechanical existence conditions for steady shocks. These
conditions reduce to those of Drugan and Rice [(1984) Restrictions on quasi-statically moving surfaces of
strong discontinuity in elastic—plastic solids. In Mechanics of Material Behavior (ed. G.J. Dvorak and R. T.
Shield), pp. 59-73. Elsevier Science, Amsterdam] and Drugan and Shen [(1987) Restrictions on dynamically
propagating surfaces of strong discontinuity in elastic-plastic solids. J. Mech. Phys. Solids 35, 771-787;
(1990) Finite deformation analysis of restrictions on moving strong discontinuity surfaces in elastic—
plastic materials: quasi-static and dynamic deformations. J. Mech. Phys. Solids 38, 553-5741 whenever
thermomechanical coupling is neglected (i.e. when the thermal deformation coefficients or the jump in
temperature is neglected, or if the jump in strain has a zero inner product with the thermal deformation
coeflicient tensor) ; specific situations where such a simplification is sensible are outlined.

1. INTRODUCTION

This work extends the pioneering one-dimensional inviscid fluid analysis of Courant
and Friedrichs (1948) to general three-dimensional deformations and arbitrary
materials to show that the sequence of states attained in a smooth wave follows the
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shock Hugoniot until third order in material time rates of fundamental field quantities,
even if entropy generation occurs at first or second order. Courant and Friedrichs’
analysis, which concludes that entropy changes do not occur until third order, is
apparently the source of a common, but erroneous, assertion that a shock may be
approximated by a smooth wave only if the entropy generation is not too great. In
addition to assuming the material is an inviscid fluid, Courant and Friedrichs
implicitly assume the material is mechanically conservative (i.e. the dissipation for
smooth motions is zero). Given this assumption, it is not surprising that the entropy
due to the shock itself does not occur until higher order in a smooth adiabatic
approximation of the shock. We prove the following generalization of Courant
and Friedrichs’ (1948) analysis: The change in entropy across a shock, in a general
three-dimensional deformation of arbitrary material, will agree until third order (i.e.
through second order) with the change in entropy for an appropriately constructed
smooth motion between the same end states—even if entropy generation occurs at first
or second order. Furthermore, the agreement will be through all orders whenever the
shock propagates under steady-state conditions with a non-turning reference con-
figuration image.

Having legitimized the representation of a shock by a smooth wave (approximately
for low to moderate shock strengths for general non-steady shocks, and possibly
exactly for steady-state shocks with non-rotating reference configuration images), we
then derive restrictions on thermoelastic—plastic propagating jump discontinuities
under steady-state (or nearly so) conditions. Thermoelastic—plastic kinematics and
constitutive laws are reviewed in Section 4, and in Section 5 we identify specific
thermodynamical mechanisms that may permit the existence of an elastic—plastic
shock that would otherwise be ruled out by a purely mechanical analysis. It is well-
known that the second law in jump form restricts the class of admissible discontinuities
(Lax, 1973). The smooth form of the second law requires that the mechanical dis-
sipation be non-negative, but the maximum plastic work inequality (MPWI) requires
that, in general, the dissipation must be sufficiently non-negative. That is, the MPWI
requires that the dissipation associated with the actual stress state must exceed or
equal the dissipation associated with any stress state within or on the yield surface.
Therefore, in many instances, the MPWI is a stronger restriction on the motion than
the second law and may consequently lead to stronger shock admissibility criteria. By
enforcing an integrated form of the maximum plastic work inequality, we show that
the existence of an elastic—plastic shock often depends critically on thermomechanical
coupling. That is, if the jump in temperature is neglected, or if the thermal expansion
coefficient (in the anisotropic case, the thermal deformation coefficient tensor) is
neglected, or if the jump in strain has a zero inner product with the thermal defor-
mation coefficient tensor, then a shock may be impossible or, at best, may be restricted
to propagate only at an elastic wave speed.

One of our primary motivations for the present study is to attempt to provide a
rigorous understanding of when it is legitimate to permit propagating jump discontinuities
in solutions of elastic—plastic boundary-value problems when the governing equations
employed are purely mechanical. As explained by Courant and Friedrichs (1948), in
actual materials, large gradients in velocity and temperature produce marked effects
of friction and heat conduction, causing irreversible thermodynamic processes and
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entropy production. In such a large gradient region, purely mechanical constitutive
equations must be generalized. Such regions are usually very narrow physically ; thus,
an alternative to generalizing the mechanical constitutive equations is to approximate
the narrow, but finite, transition region by a mathematically sharp jump discontinuity.

Entropy production by a shock shows up as a modification to the first law of
thermodynamics (energy balance) as compared to the first law’s form for a smooth
wave in a purely mechanical model. We argue [as did Courant and Friedrichs (1948)]
that when conditions are such that the entropy production due to the shock itself is
very small, that is, when the change in the first law produced by the shock is negligible
in comparison to a smooth wave, then the stress and deformation paths experienced
by a material particle during its passage through the shock are the same as when the
particle passes through a smooth wave having the same start and end states as the
shock. Thus, in such cases we derive restrictions on shock behavior by analyzing
permissible stress and deformation paths through a smooth wave characterized by
purely mechanical governing differential equations.

Our contention is that a propagating surface of jump discontinuity in the solution
of a purely mechanical elastic—plastic boundary-value problem is in accord with the
underlying laws of thermodynamics, and hence is physically acceptable, only if the
propagating discontinuity satisfies the restrictions we derive herein. This concept is
analogous to the fact that any physically correct elastic-plastic solution must involve
only non-negative plastic work rate, as also required by the underlying laws of
thermodynamics.

2. THE THERMOMECHANICAL FIELD LAWS

This section outlines the thermomechanical field laws in their local and jump forms.
Discussion of thermoelastic-plastic constitutive laws is postponed until after the
analysis of Section 3, which legitimizes the approximation of a weak shock by a
smooth wave regardless of the constitution of the material.

Adopting a modified version of the “‘rational thermomechanics™ theory of Coleman
and Noll (1963). temperature and entropy are assumed to exist for non-equilibrium
states (so that rate forms of the governing equations are sensible) and the principal
thermodynamical restriction imposed on the constitutive equations is the Clausius—
Duhem Inequality. The “rational’ approach is justified within the axiomatic foun-
dations of continuum thermomechanics (see, e.g. Gurtin and Williams, 1966, 1967),
though there remain some unresolved objections against the physical foundations of
the theory (e.g. Jouer al., 1988). For example, temperature and entropy and, therefore,
rate forms of the classical thermodynamical laws, are not well-defined during
extremely transient processes such as explosions. However, Wallace (1991), who
obtains good agreement with experiments using the “‘rational’ approach, argues that
rate forms of the thermodynamical laws are sensible for very fast processes such as
shocks if (as with metals) the characteristic speed at which a material approaches
equilibrium is very fast. Alternatively, Kestin and Rice (1970) and Bataille and Kestin
(1975) suggest that entropy and temperature may be defined at a non-equilibrium
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state if this state can be associated with a fictitious accompanying constrained equi-
librium state.

2.1. Local (smooth) field laws

Let Q(7) denote a Lagrangian control volume at time 7. Let Q, denote a reference
configuration defined so that points x in Q are mapped from points X in £, via a
piecewise continuous deformation gradient tensor F = (¢x/6X),. Here and throughout
this paper, variables held constant when taking partial derivatives are indicated by
subscripts.

In regions where all field variables have continuous first derivatives in both space
and time, the local forms of conservation of mass, conservation of linear momentum,
the first law of thermodynamics, and the Clausius-Duhem Inequality (CDI) are,
respectively,

p+pVev=0 or p,=pJ, 2.1
1 . I
\"—b=—V0't=—V‘0’, (22)
Po p
é=Pyu+Pr or u=P+Ps, (2.3)
¥ 1. /q ¥ 1. Q
S—{=)+-V- (o )=s—|=]|+—Vo-{=]=0, 24
A b R O A GRS
where
) | . 1.
Pyu=b v+ —V - (t'v) =b'v+—-V:(6-v), 2.5)
Po P
) . 1 .1
P =Py—~F=—t":F=-0:D, (2.6)
Po P
. 1.
Pr=r——Vy:Q=r——-V-q, 2.7
0 P
/{E%V'V. (2.8)

Here, p is the mass density; p, is the initial mass density (when F = L, the identity
tensor) ; v is the material velocity ; J is the determinant of F; b is the body force per
unit mass; o is the Cauchy stress; t is the right nominal (or First Piola—Kirchhoff)
stress (t = JF~'- ¢, where F ' is the inverse of F) ; e and u are the specific energy and
the specific internal energy, respectively (related by u = e — £, where £ is the kinetic
energy per unit mass); s is the specific entropy; T is the absolute temperature; r is
the heat source per unit mass; q is the heat flux and Q the nominal heat flux
(Q =JF"'-q); and D is the symmetric part of F-F~'. The scalars 2,,, 2,, #, are,
respectively, the mechanical power, the stress power, and the thermal heating power,
each per unit mass. The operations V+() and V,-( ) denote the spatial and reference
divergence, respectively ; a superposed dot denotes the material time rate [i.e. for any
field variable v, ¥ = (6y//01)x] ; the raised dot (*) represents the vector inner product
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[e.g. (6-v),=o,0]; and the double dot (:) denotes the tensor inner product [e.g.
6:D = g;D,]. (Latin subscripts denote Cartesian components, and the summation
convention for repeated subscripts is employed.)

Applying the product rule for the divergence of q/T and using the first law, the CDI
may be written in the alternative form,

{(+=2=0, (2.9)

NI

where { is an innominate measure of the alignhment between the heat flux vector and
the temperature gradient defined as

1 N 1
(== a- (VD)= ——
poT”

T Q- (VoT), (2.10)

and the mechanical dissipation & is given by either of the following equivalent
expressions

9 = Ts— Py, (2.11a)
G = Ti+ P, —u. (2.11b)

If it is assumed or proved that heat always flows from hot to cold (i.e. if { > 0) and
if the mechanical dissipation % is assumed to be independent of the temperature
gradient, then the principal restriction imposed by the CDI becomes simply & > 0.

2.2. Jump forms of the governing thermomechanical laws

Suppose, as illustrated in Fig. 1, there is a moving surface of discontinuity X, which
we term a “shock,” across which one or more field variables jump and away from
which all field variables have finite continuous first derivatives in both space and time.

Image Q,, of sub-body Arbitrary sub-body Q

Image £, of
shock surface

Shock Surface X

REFERENCE CURRENT
CONFIGURATION CONFIGURATION

Fig. 1. A surface of discontinuity £ moving through an arbitrary sub-body Q; Z, and Q, are the reference
images of ¥ and Q, respectively. The vectors indicate the absolute normal propagation velocity of each
discontinuity surface as seen by a fixed observer.



978 R. M. BRANNON et al.

The jump of any field variable  is denoted by double brackets, defined by
W] =v" v, (2.12)

where ¢+ and y~ are the limiting values of i/ just ahead of and just behind the shock,
respectively. Note that [y ] is the negative of the temporal jump in . A subscript “4”
denotes the average of the (+) and (—) side limiting values:

AR

=t

i

(2.13)

The jump forms of conservation of mass, conservation of linear momentum, the
first law of thermodynamics, and the Clausius—-Duhem Inequality are respectively
(see, e.g. Chadwick, 1976):

[pc] =0 or [poco] =0, (2.14)
[v] = _Nelq_ _nle] (2.15)
PoCo pc ’
le] = [wu]+[wr] or [u]=[w]+[w] (2.16)
1 1
[[sﬂ—;;[[%}l'nz [s]—puco [%]N <0, (2.17)
where
C=wv,—ven, (2.18)
L N-[t-v] n-[o-v]
[”’ML = — 7(;:7 = — ’pC s (219)
N-t, ‘04
] = [l - [4] = = v = = 2]
N[N n-fe-e]-n 1
= e = 27 = o t,: ’[F]], (2.20)
S _N-[Q] _n-[q]
[wr)=— 5= @.21)

Here, «, is the normal propagation speed of X as seen by a fixed observer; n and N
are the unit normals (in the direction of propagation) to X and X, respectively; ¢, is
the normal propagation speed of the reference image of the shock Z,; and c is the
propagation speed of X as seen by an observer moving with a material particle.

Several of the above alternative versions of the jump laws make use of the physical
requirement of continuous displacements (normal displacement continuity is required
so material cracking or interpenetration does not occur; tangential displacement
continuity so that only finite plastic work is produced by finite motion of a shock),
which implies the following restrictions (Hill, 1961 ; Hadamard, 1903):

[F] = [F]- NN, (2.22)



Elastic- plastic shock waves 979

[v] = —co[F]*N, (2.23)

N-[JF'] =0, (2.24)
pcdA = pycy dA,, (2.25)
oo NE. (2.26)
pc - Polo

Here, dA is an element of area on the shock surface X, dA, is the reference image of
dA, and NN is a dyad. The differential pcdA (or pyc, dA,) represents the mass flow
rate across the area element.

It is sometimes convenient to express the results of discontinuity analyses in terms
of the characteristic segment vector 4 (Hadamard, 1903), defined as

p=FpoNe - N nele] @2.27)

2.3. The Hugoniot

Using (2.21) and the last expression for [w,] in (2.20), the first law jump equation
(2.16) may be written as

I = e L0

The “Hugoniot” is the set of all states {F, t, u, Q} on one side of the shock front
associated with a given STATE 1, {F,, t;, u,, Q,}, on the other side, that are compatible
with the internal energy jump equation (2.28) in the form

(2.28)

] N . —_
u—u, = —(t"+t7): (F—F)+ (Q-&J. (2.29)
2pq PoCo
The Hugoniot function H is thus defined as
1 N-(Q—
H(u.t,F,Q)E(u—u])—w(tT+tT):(F—F,)—M. (2.30)
2p0 PoCo

Any state satisfying H = 0 is said to be “on the Hugoniot.”

States compatible with the energy jump equation in the form (2.28) will not necess-
arily be compatible with the energy equation in any of the alternative forms suggested
by (2.16) and (2.20) unless the states are additionally compatible with one or more
of the other jump equations such as (2.22), (2.23) or (2.15). The form (2.30) for the
Hugoniot is used because it employs only thermodynamical quantities (see Courant
and Friedrichs, 1948).

The set of solutions to the equation H = 0 is generally regarded as the set of all
constrained equilibrium states achievable by a material particle once it passes through
a shock. (As a simple example, for a shock in an inviscid gas, H = 0 defines a simple
pressure-volume curve.) It is important to note that these equilibrium states may
represent different shock wave strengths, at different shock speeds. For the reference
state, the second equation of (2.14) requires [¢,] = 0, but on the Hugoniot ¢, cannot



980 R. M. BRANNON et al.

be treated as a constant because a different set of {F, t, u, Q} corresponds to a different
¢, for a given {Fy, t;, u;, Q}.

In the next section, it is shown that a smooth motion can be constructed so that the
state of a material element instantaneously satisfies H = 0. Even if a state achieved
during a smooth motion instantaneously satisfies H = 0, it may not satisfy H = 0 at
some later time, in which case the smooth motion would only approximate the
Hugoniot. If all of the variables in the Hugoniot function are parameterized as
functions of time (holding the material particle constant), the Hugoniot H at some
time ¢ may be expanded in terms of the Hugoniot function H, at time ¢, (when STATE
1 is achieved) as

. 1 ..
H:H|+H1(I"[1)+”2’,Hl(t—t1)2+"'a (2.31)

where H, and A, are the first and second material time rates of H evaluated at STATE
1, respectively. The accuracy of the approximation of a shock by a smooth motion
can, therefore, be characterized by the lowest material time rate of H that is non-zero
at STATE 1. It is shown in the next section that a smooth wave can be constructed
such that the first and second material time rates of the Hugoniot function (2.30) are
zero and the third rate is non-zero, thereby showing that the change in thermodynamic
state across a general non-steady shock may be approximated until third order in
material time rates of fundamental field variables by the change in thermodynamic
state for a smooth motion having the same initial state. The error in this approximation
may be bounded by applying the Remainder Theorem for the expansion (2.31).

3. APPROXIMATION OF A SHOCK BY A SMOOTH WAVE

In this section, we quantify the degree to which an appropriately constructed
smooth wave approximates a general shock wave. The analysis is closely related to a
similar, pioneering analysis by Courant and Friedrichs (1948) in which first and higher
order increments of the Hugoniot function are compared with increments of the first
law. In addition to restricting their attention to fluids, Courant and Friedrichs (1948)
implicitly assume that the material is “‘mechanically conservative,” meaning that
homogeneous smooth adiabatic (#; = 0) deformations are also isentropic (§ = 0);
this assumption is not reasonable for dissipative materials. An approximation of a
shock by an adiabatic smooth wave in a mechanically conservative material predicts
d*s = 0 for all k. Taking increments of the Hugoniot function (using the mechanically
conservative version of the first law for increments of u), Courant and Friedrichs
(1948) show that ds = 0, d’s = 0, and d°s # 0, thereby showing that entropy gen-
eration due to the shock itself occurs at third order. The derivation of this result depends
critically on the implicit assumption that the material is mechanically conservative.
We show below that for any material—conservative or not—the entropy generation
predicted by a smooth wave approximation of a general shock will agree with the
actual entropy generation until third order in material time increments of fundamental
field variables, even if entropy generation occurs at first or second order. It is not
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necessary to assume that the change in entropy across a shock is small in order to
justify approximating the shock by a smooth wave—the order of accuracy of such an
approximation has nothing to do with the entropy production.

3.1. Error order of a smooth wave approximation to a general shock

Consider a smooth motion, not necessarily associated with a shock, with which is
associated a scalar ¢, and a unit vector N. We seek conditions that must be satisfied
by the smooth flow so that there is a transition zone, or sequence of thermomechanical
states, that approximates a shock moving with normal velocity c,N. Just as a pressure-
volume diagram describes the states associated with any particular gas process, for a
shock in an arbitrary medium, the Hugoniot equation H = 0 defines the constrained
equilibrium states achievable by a material particle once it passes through the shock
(Courant and Friedrichs, 1948). If a smooth wave were to model a shock precisely, it
would have to satisfy H = 0—that is, H and a// of its material time derivatives would
have to vanish. As discussed in Section 2.3, the accuracy of the approximation of a
shock by a smooth wave is, therefore, characterized by whether H and higher order
material time rates are zero at STATE 1. Since the motion is smooth, the material
time rate of internal energy is given by the local form of the first law [(2.3) with (2.6)
and (2.7)]:

1 , 1.
u=—t:F+r——V,-Q, 3.1
Po Po

so the material time rate of the Hugoniot function (2.30) becomes, using (3.1):

R S
H =5 [ =) :F =" (F—F)]

1T,
+r—[V0-Q+
p

o

N-Q 1/. ¢
Q+E—<N—EON)-(Q—Q,)]. (3.2)

Co 0

Let us first seek the weakest restrictions to place on the flow so that H ~ 0. A
necessary condition for H & 0 is that H = 0 at the particular STATE 1. Since STATE
1 is arbitrary, this requires that

;-—pl[VO-Q+N'Q}=0. (3.3)

0 Co

This restriction is satisfied whenever, for example, r = 0 and the heat flux has a zero
tangential gradient and appears constant to an observer moving with velocity ¢oN.
Thus, whenever (3.3) is satisfied, a shock is thermodynamically equivalent to a smooth
wave until at least second order in material time rates.

Courant and Friedrichs (1948) assume at the outset that the heat source and the
heat flux are zero ; we shall now make the slightly weaker assumptions that the heat
source is zero and the heat flux is constant, since otherwise, except for the special case
of steady-state shock propagation (¢, = 0) with a non-rotating reference configuration
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image (N = 0), the term involving (Q — Q,) in (3.2) will contribute to the higher order
rates of H even at STATE 1.

With these assumptions of zero heat source and constant heat flux, the Hugoniot
function and its first, second, and third derivatives become

] T Ty o
H:(u—ul)—%(t +t0): (F—F,), (3.4)
H:L[(tT—tT):F‘tT:(F—Fl)], (3.5
2p,
D L
sz—po[(t —th):F—iT:(F—F))], (3.6)
"=L[tT:F—fT:F+(tT—tI):i‘—'iT:(F—~F,)]. (3.7)
2po

Here, the superposed double and triple dots denote the second and third material
time rates, respectively.
At STATE 1, (3.4) through (3.7) show directly that / and its rates become

H =0, (3.8)

H, =0, 3.9

H, =0, (3.10)

H, = —({":F, —~t:F)). 3.11)
2p,

Since STATE 1 is arbitrary, these results show that a general shock is thermo-
dynamically equivalent to a smooth wave until third order in material time rates at
which point contributions due to the shock itself first appear. This result is independent
of the material constitution, as the preceding analysis shows.

The similar, but one-dimensional, analysis by Courant and Friedrichs (1948)
indirectly employs the material constitutive equation, which is not necessary. Courant
and Friedrichs (1948) write the first law (in the current notation) as & = 2,+ 7%, and
they therefore implicitly assume the material is mechanically conservative during
smooth deformations. That is, referring to (2.11b), they assume the dissipation & is
zero. They also restrict attention to shear-free motion. These assumptions are neither
necessary nor—for solids or viscous fluids--reasonable. Of course, one might suspect
that perhaps Courant and Friedrichs (1948) are analyzing a fictitious reversible process
with the same thermodynamic end states for the purpose of calculating entropy
changes (see Resnick and Halliday, 1977). However, if this were the case, the fictitious
stresses/strains would not necessarily correspond to the actual total stresses/strains
(the fictitious strains would be the elastic strains for an elastic-plastic material or,
alternatively, the stresses would be the so-called “thermodynamic™ stresses), and
therefore would not necessarily be restricted to satisfy the Hugoniot function. If the
Hugoniot function is enforced, then the first law must correspond to the constrained
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dissipative process, not a fictitious reversible process. As a consequence of Courant
and Friedrichs’ (1948) implicit assumption of a mechanically conservative material,
they find that the entropy increments ds and d?s are zero while d°s # 0 this result is
apparently the source of the common but erroneous statement that a weak shock may
be approximated to at least second order by a smooth wave only if the entropy
generation of the real shock is small. In general, however, ds, or at least d?s, will be
non-zero for a locally adiabatic (2, = 0) motion on account of dissipation, but that
motion will nevertheless approximate a shock.

Courant and Friedrichs (1948) also state that the result is valid only for weak
shocks (meaning ones for which the jump in traction or velocity is small), but, as
shown above, the error of the smooth wave approximation is precisely third order
regardless of shock strength. In short, our result shows that a shock of arbitrary
strength may be approximated until third order by a smooth wave even if entropy
generation is significant at first or second order. Of course, if the shock strength is large
enough, even a third order approximation might be poor.

Neglecting heat flux, Morland (1959) and Germain and Lee (1973) reach a similar
conclusion to the one italicized above in the one-dimensional context for specific elastic—
plastic constitutive models. The latter authors interpret this result as an indeterminacy in
the Hugoniot attributable to neglect of rate effects, which may be a valid hypothesis
because, for a real shock, rate effects must be enforced artificially in a smooth wave
approximation of the Hugoniot which, recalling Kestin and Rice’s (1970) concept of
constrained equilibrium, represents a fictitious evolution of equilibrium states. For shocks
hypothesized to exist in the solution of a boundary value problem for a rate-independent
material, the results of this section may be interpreted as consistency relations.

The conclusions of this section are unrelated to several similar-sounding statements
by Wallace (1991). When Wallace states that entropy is second order in strains, he is
simply referring to the fact that entropy generation does not commence until yield is
achieved, and yield occurs at a non-zero strain. When Wallace states that the normal
stress is lower order in entropy than the shear stress, he is merely enforcing the
physically plausible assumption that the Griineisen (thermal deformation coefficient)
tensor is isotropic at small elastic strains. Wallace correctly points out that entropy
generation for elastic—plastic solids commences at second order in strains rather than
at the third order liquid Hugoniot prediction. For the one-dimensional shocks studied
by Wallace, Ts = u—% 4+, where #, represents the plastic power and is pro-
portional to the shear stress. Hence, when the shear stress is zero, Ts = u— 2, which
makes the material equivalent to the implicitly mechanically conservative material
studied by Courant and Friedrichs (1948), and, therefore, the entropy generation
occurs at third order when shear stress is neglected. Wallace blames the discrepancy
(in the order of entropy generation) on the liquid Hugoniot assumption that shear
stress is zero; instead, it is neglect of dissipation, and not neglect of shear stress per
se, that leads to differences in the order of entropy. Any material (such as a porous
metal) that is capable of exhibiting dissipation in isotropic deformations may generate
entropy at first or second order even if the shear stress is zero. Nevertheless, the results
of this section prove that the smooth wave approximation is valid until third order in
material rates even if entropy generation occurs at second (or first) order.

A common justification for the liquid Hugoniot assumption is that, for high pressure
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shocks, the effect of shear stress is negligible. However, for elastic—plastic shocks, the
analysis of Section 5 suggests that the existence of such shocks is determined, at
least in part, by thermal stresses due to plastic dissipation, which (for plastically
incompressible materials) in turn is typically generated only in the presence of shear
stresses. Thermal stresses are often small compared to the total stress (especially for
weak shocks, as indicated by Wallace, 1991) primarily because the thermal expansion
coefficient is small, not necessarily because the change in entropy is small, though
entropy generation is smaller in weaker shocks. Neglecting low order changes in
entropy would be tantamount to neglecting plastic work—certainly not a reasonable
assumption. It is shown in Section 5 that, even if thermal stresses and strains (which
result from thermomechanical coupling) are small, they can play a key role in the
existence of certain elastic—plastic shocks and therefore must not be neglected.

3.2. The smooth wave approximation improves for steady-state and non-rotating shock
propagation

In the previous section we showed, by analyzing the Hugoniot function for a
smooth wave, that the first law of thermodynamics across a smooth wave agrees with
the jump form of this law that is satisfied across a general shock until third order in
material time rates of fundamental field variables. In performing this analysis, we did
not enforce the conditions of momentum conservation and compatibility. These
certainly must also be satisfied, but it appears that they do not permit any stronger
results than those of Section 3.1 for the general shock case. However, for a steady-
state shock that propagates with a non-rotating reference configuration image, we
show here that enforcement of momentum conservation and compatibility reveal
that a smooth wave thermodynamically approximates a shock through al/ orders of
material time rates of fundamental field variables.

Assuming no body forces, the local forms of momentum conservation and com-
patibility in terms of reference configuration quantities, which must be satisfied by a
smooth wave, are, respectively

Vo t=pov, (3.12)
F=xV,=vV,. (3.13)

For a smooth wave that propagates without rotating under steady-state conditions
with constant speed ¢, in the direction of its normal N, the material time derivative
of any field quantity ¥ within the wave is simply

¥ = —copVo N, (3.14)
and we have required
N=0, ¢ =0. (3.15)

A final requirement is that field quantities may vary through the smooth wave (i.c. in
the direction of N), but nor along it (it is intuitively obvious that for a smooth wave
to emulate a shock, the smooth wave should have this feature). Under this condition,
the reference configuration del operator simplifies to
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d
- 1
Vo= N, (3.16)

where v measures distance in the N direction. Combining (3.14) and (3.16) gives

. dy dy
V= ~co(EN>'N= —Co gy (3.17)
Now, application of (3.17) and then (3.16) shows that
1. dt"
——t""N=—"—N=V,t. (3.18)
Co dv

Also, application of (3.16) and then (3.17) to (3.13) gives

F-szVO-N=<g~EN>-N=—%v. (3.19)
Using (3.18) and (3.19), (3.12) becomes:
| N-f=p,c3"N : (3.20)
taking the material time rate of this using (3.15) gives
N-f = pociF-N. 3.21)

Returning to compatibility (3.13), we apply (3.16) to obtain

(3.22)

which shows immediately that
F=@ NN, (3.23)
Taking the material time rate of (3.23) gives, again using (3.15):
F =(F-N)N. (3.24)

Finally we observe that (3.23) and (3.24) show, recalling from Section 2 the definition
of tensor inner product (:)

T :F=N-{-F-N, (3.25a)
tT:F=N-t-F-N. (3.25b)

Now recall from (3.8)—(3.11) of Section 3.1 that at an arbitrary STATE 1, we
showed that H, = H, = H, = 0, but for a smooth wave modeling a general shock we
were only able to conclude that

H, =_—(ti:F —t]:F)). (3.26)
2p,
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Now, however, for a smooth wave modeling a steady-state non-turning shock, appli-
cation of (3.20), (3.21) and (3.25) to (3.26) reveals

H, = %}‘ [(pocsFy - N) - (F, *N) = (pyciF, - N) - (F, -N)] = 0. (3.27)

Results (3.8)—(3.10) and (3.27) lead to some fascinating conclusions with respect
to the comparison of shocks and smooth waves. First, these equations show that
information on whether a shock is propagating under steady-state conditions, and
whether its reference configuration image rotates during propagation, does not enter
the material time rates of the Hugoniot function at STATE 1 until third order. This
means that an arbitrarily propagating non-steady shock can be accurately (i.e. to
third order) represented thermodynamically by a general smooth wave.

Second, (3.27) shows the surprising new result that if a shock wave propagates
under steady-state conditions and with a reference configuration image that does not
rotate during propagation, then H, = 0, meaning that such types of shock can be
represented at least to fourth order accuracy by a steady-state, non-rotating smooth
wave. In fact, it is easy to show by extending the approach used above that for smooth
waves propagating under steady-state, non-rotating conditions, a// orders of material
time derivative of H vanish at STATE 1! While not guaranteeing that such a smooth
wave can exactly represent a shock wave, this does show that such a representation
will be either exact or extremely good in such cases.

3.3. Comparison of momentum conservation and compatibility for a smooth wave versus
a shock under steady-state and non-rotating propagation

The previous two sub-sections have focused on showing how the first law of thermo-
dynamics compares across a shock versus across a smooth wave. Here we show,
for the case of steady-state and non-rotating shock propagation, that the jump forms
of momentum conservation and compatibility, which must be satisfied across a shock,
are identical to their forms that govern a smooth wave. We thus conclude that
under these steady-state, non-rotating conditions, a smooth wave provides a precise
representation of a shock with respect to these two fundamental conditions also.

For a shock, the jump conditions resulting from momentum conservation and
compatibility (i.e. the assumption of continuous displacements), (2.15) and (2.23),
can be combined to give

N-[t] = pyc3[F]*N. (3.28)

Since this equation is valid for any shock wave, we may rewrite it for a sequence of
shock waves each having the same {F,, t,, u,, Q,} and p,, N, but different end states
IF, t,u, Q}:
(SR s J -

N-(t—t,) = poci(F—F;) N, (3.29)

where ¢, and N are functions, in general, of t and F, and hence of time ¢. Taking first
and second material time rates of (3.29) thus gives:

N-t+N-(t—t,) = pociF N+ (F—F,) - (2poca¢aN+pociN), (3.30)
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N-T+2N-i4+N-(t—t,) = pocdF - N+4pycocoF - N4+2p,ciF-N
+(F—-F)- [2,00(("(21 +¢o¢)N +4P0C0¢"0N +9066N]- (3.31)

Similarly to the above analysis, the jump condition (2.22), also a consequence of
displacement continuity, is valid for any shock wave and thus requires for a sequence
of shock waves each having the same {F ., t,, u;, Q,} and p,. N, but different end states
{(F,t,u, Q}:

I L,

(F—F)) =(F—F,)-NN. (3.32)

Taking first and second material time rates of this gives
F=FNN+(F—F,): (NN+NN), (3.33)
F=F-NN+2F- (NN+NN)+(F—-F,) - (NN +2NN+NN). (3.34)

Now, for the case of steady-state propagation of a shock whose reference con-
figuration image does not rotate, conditions (3.15) apply. In this case, (3.30), (3.31),
(3.33) and (3.34) are seen to reduce directly to the smooth wave restrictions derived
in Section 3.2, namely (3.20), (3.21), (3.23) and (3.24), respectively. This shows that
these two sets of conditions agree exactly on both sides of the shock and smooth wave,
and it is easily shown that this is true for all orders of material time rates of these
conditions. Thus, for steady-state and non-rotating propagation, a smooth wave
across which (3.20), (3.21), (3.23) and (3.24) are satisfied precisely represents how
momentum conservation and compatibility restrict stress and deformation paths
across a shock.

3.4, Discussion

The analysis of Section 3 legitimizes the approximation of a shock by a smooth wave,
regardless of the material constitution. Because this result is valid up to third order for
general non-steady shocks, we must still limit the shock strength, or the error—even
at third order—might be too large. We note in passing that a smooth approximation
of a shock will fail to capture a portion of the temperature increase that is generated
by the passage of a shock, even in “mechanically conservative™ (e.g. perfectly elastic)
materials, unless the smooth wave constitutive description includes rate effects that
are appropriately scaled to accommodate the smooth wave expansion of the time
scale. Such effects are implicitly neglected in classical (constrained equilibrium)
thermodynamics. However, the magnitude of these effects on predictions of stress,
temperature, etc. (which can be quantified only by inclusion of non-classical
thermodynamic rate terms) are here assumed negligible in comparison with the larger,
smooth-wave classical contributions, as evidenced, for example, by the successful
application of classical thermodynamics to shocks in metals by Wallace (1991).

The remainder of this work focuses on specific conclusions that can be drawn from
smooth wave approximations (that incorporate thermodynamics) of steady, non-
rotating elastic--plastic shocks, for which we have just shown the smooth wave
approximations to be possibly exact or at least extremely accurate. Large deformation
elastic—plastic kinematics and constitutive equations are reviewed in Section 4. Then,
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in Section 5, large deformation thermoelastic—plastic shocks are shown to be possible
in certain situations only if thermomechanical coupling is not neglected.

4. LARGE DEFORMATION ELASTIC-PLASTIC KINEMATICS AND
CONSTITUTIVE LAWS

Discussion of elastic—plastic kinematics and constitutive laws has been postponed
until now to emphasize that the results of Section 3 are independent of the constitution
of the material. The present section outlines the constitutive equations that will be
used in Section 5 for the analysis of large deformation thermoelastic—plastic shocks.

4.1. Deformation gradient decomposition

As pointed out by Lee and Liu (1967) and extended to general three-dimensional
deformations by Lee (1969), the deformation gradient F may be multiplicatively
decomposed :

F=F-F, @A.1)

where our interpretation is that F° represents the macroscopically thermoelastic part of
the deformation and F® represents the part of the deformation due to both dissipative
rearrangement of the atoms (plastic deformation) and microscopic changes in the
defect structure (recoverable by annealing). The intermediate (generally non-Eucli-
dean) configuration, which corresponds to F¢ = 1, is called the elastic reference con-
figuration and, by definition, is at an elastic reference temperature and is stress-free.
The stress and other state variables are assumed to be derivable from thermodynamical
constitutive laws identical to those for classical thermoelasticity except that the ref-
erence configuration for the thermoelastic part of the response is the intermediate
configuration and parameters in the constitutive equations may permissibly change
with plastic deformation. The rotational parts of F° and F® are assigned so that the
rotation of the elastic lattice is zero in the elastic reference configuration.

The deformation decomposition F = F¢-F" implies that the velocity gradient
(L = F-F~') may be decomposed additively into elastic and plastic parts:

L=L°+Lr, (4.2)
where
Le=FF~' and LP=F-F°-Fr~'-F! 4.3)

The plastic part of the deformation is assumed incompressible ; that is, the determinant
of FP is unity, implying that the trace of L’ is zero and the density in the elastic
reference configuration is equal to the initial density p, (i.e. the density when F = I).

Enforcing symmetry of the Cauchy stress o, (4.2) shows that the stress power (2.6)
may be decomposed into elastic and plastic parts:

Po=P AP, (4.4)

where
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1 1

P, =-6:D=—P:E, 4.5)
p Po
1 1 ,

P, =~6:D°=—P:E, (4.6)
p Po
1

P, = ;a:DP. 4.7)

Here, D° and DP are the symmetric parts of L°and L?, respectively ; P and P¢ are Second
Piola—Kirchhoff stresses defined as P=JF'-¢-F T and P°=JF~'-¢*F"; and
E and E° are the total and elastic Lagrange strains defined, respectively, as

E=(FF-I)=3U-U-I), (4.8)
E=1(FT-F—I) =, (U U -1, (4.9)

where U and U* are the positive definite stretch tensors from the polar decompositions
F = R-U and F° = R*- U, respectively.

4.2, Thermoelastic—plastic constitutive equations

The internal energy is taken to be a constitutive function of the elastic deformation
gradient F*, the specific entropy s, and an array x of macroscopic laboratory variables
that characterize the microscopic elastic fields associated with the defect structure.
This choice of independent variables, which is also used by Perzyna (1971), Mandel
(1972), Wallace (1985), and Mro6z and Raniecki (1976), does not exclude the type of
material response described by internal variable theories (e.g. Rice, 1971) because x
(or any other parameters such as the elastic moduli in the constitutive equation) may
permissibly depend on plastic deformation history via an independent kinetic relation.
In accordance with Truesdell and Toupin’s (1960) principle of equipresence, the
temperature 7 and the Cauchy stress ¢ (or, equivalently, the Second Piola—Kirchhoff
stress P) are also taken to be constitutive functions of F¢, s, and «. It is often assumed
(e.g. Germain and Lee, 1973) or argued (Lubliner, 1972) that the internal energy may
be decomposed into a thermoelastic free energy # plus a hardening energy ¢:

u="a+¢, (4.10)

where
a = u(F,s), 4.11)
&= <(x). ’ (4.12)

Using (4.4), (4.10), (4.11) and (4.12) in (2.11b) and (2.9), noting that the rates s and
F° may be controlled independently of s, F* and x, and imposing the principle of
material frame indifference for elastic lattice rotations, it is straightforward to show

that
T= ((w”) : (4.13a)
cs E¢
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1 ot

—pe= () (4.13b)
Po cE° ),

9 =2,-¢20, (4.14)

where it has been assumed that the dissipation & is independent of the temperature
gradient. Because ¢ represents the elastic strain energy (recoverable by annealing)
associated with defect structures such as dislocation pile-ups, the dissipation & is the
portion of the plastic power that is not stored elastically in the defect structure. For
moderate temperatures, the experiments of Farren and Taylor (1925) and Dillon
(1967) show that Z x~ 0.92, at the onset of plastic deformation from a fully annealed
state and ¥ — 2, as the total plastic work increases.
By the chain rule, (4.13) and (4.6) show that

=P +Ts, (4.15)
which will later be used in the incremental form

dit =~ ¢ (dF - F~') + Tds. (4.16)

o=

The specific heat at constant strain ¢,, the thermal stress coefficient tensor B and
the isothermal elastic stiffness tensor F are regarded as known material functions
defined, respectively, as

Cil
¢ = (ﬁ)E 4.17)
oP°
B— — <aT>E: (4.18)
cP°
F=(C ). (4.19)
2 ),

The Griineisen tensor y, which appears frequently in shock wave analysis, is related
to Band ¢, by y = B/p,¢..

If ¢, B and E are approximately constant over the range of temperatures and elastic
stretches of interest, direct integration of (4.17), (4.18) and (4.19) leads eventually to
the following classical constitutive equations for the entropy, stress, and thermoelastic
internal energy :

1 T
s=s5+—B:(EE—Ej)+¢In (—), (4.20a)
Po T

P =P —(I'—T,)B+E: (E—E). (4.20b)
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=2

1 T
=i+ — P (EC—ES)+ B (B —ES) +¢,(T—T))
Po Po

1
+7(EC—E~;):[E:(E°—E;), 4.21)
0

where the subscript <17 denotes a known STATE 1 lying in the temperature and
strain range of interest.

In the special case of small elastic stretches and elastic isotropy (while the plastic
part of the material response remains arbitrarily anisotropic), the material tensors B
and F are isotropic, and the above constitutive equations specialize to

1 T
s=s54+—B:(e—¢})+¢ In <¥> (4.22a)

Po T,
oc=0,—(T—T)B+E:(&—¢). (4.22b)

] T
i=i,+—a, :(se—sﬁ)-i—p—lB:(a”—si)+g'\,(T— T))
0

Po
1
+—(e—ef):E: (& —¢5). (4.23)
2p,

Here & is the rotated elastic strain (also known as the elastic Signorini or Finger
strain), defined ase® = R¢-E<-R*' = %(VC - V¢ —1), where V*is the elastic stretch tensor
from the polar decomposition F* = V¢-R°.

4.3. Plastic potentials

For the special case of small deformations, Mréz and Raniecki (1976) show that,
for rate-independent plasticity, there must exist a scalar yield function ¢ relating the
thermodynamic forces ¢ and ', where # = p d&/dxk such that the yield surface is
described by

¢lo, 4, T) =0. (4.24)

The yield surface is convex in {a, — #"} space.

Elastic deformation occurs when ¢ < 0 or ¢ = 0 with ¢ < 0. Plastic loading occurs
when ¢ = 0 and ¢ = 0. Then for rate-independent plasticity, the yield surface serves
as a potential for the plastic strain rate and the defect structure rate:

0
o - 0Q ., %
& =iz and h—).a[, (4.25)

where the scalar / is required (by convexity and the second law) to be non-negative.
Normality and convexity of the yield surface may be expressed by

(6—6"):eP = (A —H OV, (4.26)

where {6°, #7°} is any state inside or on the yield surface at the current temperature.
In other words, the actual thermodynamic forces are the ones that maximize the
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dissipation & with respect to thermodynamic forces not violating the yield condition.
Suppose {6, #°} corresponds to some previously achieved state; then, because the
temperature has been assumed low enough that .#" is independent of temperature, it
is expected that the right hand side of (4.26) will be non-negative. Alternatively, if a
sufficient amount of plastic deformation has occurred, the right hand side of (4.26)
will be nearly zero because (Dillon, 1967) k — 0 as W, — 0. Therefore, it will be
assumed that

(6—6°):&" = 0. 4.27)

That is, the maximum plastic work inequality (MPWI) is expected to hold for ther-
moelastic—plastic deformations if the temperature remains well below the annealing
temperature.

To include materials that experience arbitrarily anisotropic yield and large defor-
mations, the yield condition is expressed in terms of the rotated Cauchy stress and,
following Drugan and Shen (1990), the MPWI is stated as

%[(R“o‘R)—(RT-a'R)O]:(RT-DP-R) > 0. (4.28)

This equation expresses normality and convexity of the rotated plastic rate of defor-
mation RT+D"-R to a yield surface phrased in terms of the rotated Cauchy stress,
R™-6-R. Here (R"-a-R)" is any rotated stress on or within the yield surface.

5. RESTRICTIONS ON LARGE DEFORMATION STEADY
THERMOELASTIC-PLASTIC SHOCKS

5.1. Conditions for general materials

As justified rigorously by the results of Section 3, we require the stress and defor-
mation paths experienced by a material particle during passage of a shock that
propagates under steady-state conditions with a non-rotating reference configuration
image to satisfy the requirements of compatibility and mass and momentum con-
servation in the incremental forms these conditions take through a steady-state non-
rotating smooth wave :

dF = dF-NN, (5.1)
F7I
N-d<—> =0, (5.2)
o
N-dt
dF*N=——. (5.3)
PoCo

Specifically, (5.1) and (5.3) follow from (3.23) and (3.20), respectively, exactly in the
case of steadily propagating non-rotating shocks, and approximately [as shown by
(3.33) and (3.30), respectively] for slightly non-steady and/or rotating shocks. Equa-
tion (5.2) is obtained simply by applying (5.1) and mass conservation (2.1) to the
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standard formula for the inverse of F, F;' = C,/J, where C,, is the cofactor (signed
minor sub-determinant) of the element F};.

An alternative, physical argument supporting the enforcement of (5.1)—(5.3) on the
stress—deformation path experienced by a material particle during shock passage is as
follows. In a material whose constitutive model is identical to the rate-independent
one to be considered below except that it possesses a small amount of rate dependence
(all real materials exhibit some rate dependence), a shock in the present model would
become a narrow transition layer through which field quantities vary rapidly but
continuously in the rate-dependent model. Since conditions (5.1)—(5.3) represent only
the requirements of mass and momentum conservation and compatibility, they are
valid for any constitutive model and in particular would have to be satisfied through
this rapid transition layer were it propagating under steady-state, non-rotating con-
ditions or nearly so.

The deformation during shock passage is taken to satisfy the same constitutive
equations as satisfied outside the shock. Again, justification for this was rigorously
provided in Section 3, which showed that for a general shock, entropy production by
the shock does not appear until third order in material time rates in the first law of
thermodynamics, so that for shocks of low to moderate strength the use of purely
mechanical constitutive equations to describe material response within the shock will
be extremely accurate. Section 3.2 showed that this is potentially exact for a steady-
state shock with a non-rotating reference configuration image.

The constitutive class is restricted such that (Drugan and Shen, 1990) if a Cauchy
stress o* is chosen constant across the shock, then RT-a* <R is on or within the yield
surface for all states in the transition layer. Any particular choice o* satisfying this
restriction will be called “admissible,” and the MPWI (4.28) may thus be written as

1
S(@=a%):Dr >0, (5.4)

Employing the symmetry of ¢ and the decomposition (4.2), D® may be replaced by
(L—L°), and (5.4) becomes

%(a~o'*):(dF'F*‘)v %(o'—a'*) s (dFe-Fe1) > 0. (5.5)

Generalizing the key idea of Drugan and Rice (1984) and Drugan and Shen (1990),
the MPWI is integrated at a fixed material particle from the time it enters the shock
on the (+) side to the time it exits on the (—) side:

F- Fe
J l(a—a*) : (dF'F')—f l(o'-o'*):(dF“F“'*') = 0. (5.6)
F- P Fe

By using jump restrictions and the constitutive law, the first integral may be integrated
explicitly and the second integral may be integrated almost explicitly, with the indefi-
nite term being the integral of 7'ds. These calculations are quite similar to those of
Drugan and Shen (1990) and will, therefore, be only briefly outlined below, though
new terms arising from thermodynamics will be discussed in detail.

Using (5.1), the integrand of the first term may be rewritten as
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1 1
;(a—a*):(dF'F") = ;N'F"' *(6—06*)-dF-N

1
= —N-(t—t*)-dF-N, (5.7)
Po

where

Po
p

t* F'a*. (5.8)

If 6* is chosen constant across the shock, then N-t* is also constant by virtue of
(5.2). Thus, using (5.3),

é(a—a*):(dF-F“)z N« (t—t*)-dt"*N

2.2
0t

N-d[(t—t*) - (t—t*)T]*N. (5.9)

2pici

For the second integral in (5.6), (4.16) shows that
1
—;a:(dF“'Fe“): —da+ T'ds. (5.10)

Using the polar decomposition F* = V¢+R® and assuming V¢~ I (while dV° is not
neglected), Drugan and Shen (1990) show that

1 |
—g*:(dF - F ") x —o*:ds, (5.11)
p Po

where (recall) &° is the elastic Signorini strain.
Using (5.9)—(5.11) in (5.6), the MPWI integrates across the shock almost explicitly
to give

N-[(t—t*) - (t—t*)T]-N+][a]— io-* : [55]]+JS+ Tds=0. (5.12)

s

2p5¢;

With the specific choices ¥ = 0, 6, and a7, this expression becomes, respectively :

ot =0 = M—M]HI Tds >0, (5.13)
1 s

o*=0¢ = [a]— ;a’ fef] = +%C§}.'}.~J Tds, (5.14)
0 5

1 s
o*=0¢" = [a]- ;—a* ] > —;cél'l—J
0

s

Tds, (5.15)

where we have used (2.20) and (2.27). Any particular choice for ¢* is “admissible” if
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a* is within or on the yield surface for all states in the transition zone. The choice
o* = 0 corresponds to enforcement of non-negative plastic work. The choice 6* = 6~
is admissible if the material is non-hardening or if it has commenced isotropic softening
by the time the shock arrives. The choice 6* = ¢* is admissible if the material hardens
in such a way that the current yield locus incorporates all prior yield loci, which
includes non-hardening, isotropic hardening, and many types of non-isotropic hard-
ening, including the formation of yield surface vertices.

5.2. Specialization of the shock restrictions for elastic isotropy

Equations (5.13)—(5.15) hold for arbitrary elastic and plastic material anisotropy
and large displacement gradients provided the elastic stretches are small. In the case
of elastic isotropy, the tensors E and B are isotropic, and the constitutive equations
(4.22) and (4.23) may be used to simplify the left-hand sides of (5.14) and (5.15) as
well as the integral of 7'ds. Alternatively, in the special case of small displacement
gradients, R & I, and therefore the constitutive equations (4.22) and (4.23) are valid
with the tensors E and B arbitrarily anisotropic.

Taking the two states (the current state and the thermodynamic reference state) in
(4.23) to be states (+) and (—) and vice versa gives:

[a]— pia [e] = %B: [e]+¢.[T]+ ;EM E: ], (5.16)

[a]— plow ] = %B: [ +¢.[T]— % ] E: o], (.17

Hence, (5.14) and (5.15) respectively, become

5

e B[] = tpocdi-A— TB:[s“ﬂvpog‘\,[[T]]—J poTds, (5.18)

st

s

e B[] < 3pocdh-a+ T*B:[se]]%—png\,[[ﬂ—}—f poTds, (5.19)

where (recall) the first inequality holds if the choice 6* = 6~ is admissible whereas
the second inequality holds if 6* = ¢* is admissible.
Using (4.20) together with symmetry of B shows that

s (=)
J poTds = J TB:de" —poe,[ T, (5.20)
st (

+)

Thus, the inequalities (5.18) and (5.19) become

(=)
e E: e ] > ;poc%}t‘/‘L—}—J (T~ —T)B:de", (5.21)

(+)

(=)
e Eqe] < ;pocgz-ﬂf (T—T*)B:de. (5.22)

(+)
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These versions show that the shock restrictions depend on changes in temperature,
not the absolute temperature as the versions (5.14) and (5.15) might misleadingly
suggest. The restrictions (5.21) and (5.22) show most clearly that it is mechanical
coupling (thermal stresses and strains) that prevents the maximum plastic work
inequality from being integrated explicitly. Suppose, however, that the integral of
TB:de¢° is approximated by the trapezoidal rule:

- T+ 4+ T-
J TB:de = — ———;—B:[[se]]—i-n. (5.23)
(+)

In most situations, the error of the approximation, #, is expected to be quite small
because (recalling that, for elastic isotropy, B is isotropic) #n is of the order of
([trace (KBe?)])’, where K is the elastic bulk modulus and s the volumetric coefficient
of thermal expansion. The error # is identically zero if T varies proportionally with
B:¢° across the shock transition layer. With the trapezoidal approximation (5.23),
(5.21) and (5.22) may be written as

l[e]:E:[&] = pocsd A+ [T|B:[e]—n, (5.24)
i) e e < pocsh A+ [T]B: e +n. (5.25)

These restrictions may be phrased in terms of the Cauchy stress by using (4.22) to
write

Te]:E:[e]—[T]B:[ee] = [o] :M:[a]+[T]B: ][], (5.26)
where M = E~' and g = M : B. Using (5.26) and (2.27), (5.24) and (5.25) become

n-[o] [e¢] n—x([o] :M:[a¢]+[TB:[a]) < xn, (5.27)

n-[o]-[e] n—x([o]:M:[a]+[T]B:[c]) = —xn, (5.28)

where (recall) the first inequality holds if the choice ¢* = 6 is admissible and the
second inequality holds if the choice 6* = ¢~ is admissible. Here, x is the wave speed
eigenvalue, defined x = p?c?/py = pc*/J = pyed/T?, where ' = JN-F~'-n. Assuming
[po] = 0, (2.14) shows that [x] = 0.

5.3. Specialization for non-hardening materials

Suppose the choices 6* = 6™ and a* = ¢~ are both admissible, as is the case, for
example, for a non-hardening material with an isotropic yield surface. Then (5.27)
and (5.28) together imply » > 0 and, more importantly, if # is negligible, (5.27) and
(5.28) imply the equality

(n-[o]-[o]-n—x([o]:M: [o]+[T[B:[s]) = 0 . (5.29)

The equation (5.29) is the large deformation thermodynamical generalization of
Drugan and Shen’s (1987) and (1990) purely mechanical analyses. As discussed by
Drugan and Shen (1987), the restriction (5.29) holds not only across the entire shock,



Elastic—plastic shock waves 997

but also across any sub-section of the stress and temperature path through the shock,
in which case, the double brackets, [| |, are replaced by angled brackets, { ), defined
as the jump across the subsection.

Recall that for small displacement gradients, M and p may permissibly be aniso-
tropic, but for large displacement gradients, the derivation of (5.29) required an
assumption of isotropic thermoelastic response, meaning that the tensors M and §
are isotropic, in which case, (5.29) may be written as

n-[S]-[S]-n—2[pn-[S]-n+]p]*
_x<2lG [S):[S]+ Lo’ _ﬁ[[r]][p]]> —0, (530

where S is the deviatoric stress, p is the spherical pressure [i.e. p = —%trace(a)], Gis
the elastic shear modulus, K is the elastic bulk modulus, and f is the coefficient of
volumetric expansion. Several specific applications of the preceding results will now
be discussed.

5.4. Special case : stress path throughout shock is below yield

If the stress state is below yield for all states in the transition layer and if the thermal
power 2, can be neglected, then the transition is isentropic and, therefore, the
wave speed eigenvalue x is a principal value of the ‘‘isentropic acoustic tensor”,
A, = n- [, n, where [, is the isentropic elastic stiffness tensor, defined as

T,
Poky

The temperature T, in this definition corresponds to the reference STATE 1 in the
expansions (4.20) and (4.21). Noting that A, is the sum of a symmetric second order
tensor plus a dyad, the spectral analysis of Brannon and Drugan (1993) may be used
to find the eigenvalues. For elastic isotropy, B = K1, and therefore

Tl KZBZ
Po€y

where ¢, is the specific heat at constant stress and A is the isothermal acoustic tensor,
n-E-n. The eigenvalues of A, are G and 2G + A*, where +* = 14 (¢,—¢,) K. Because
¢, = ¢, for most dense solids (see, e.g. Ashby, 1989), the isothermal eigenvalues differ
very little from the isentropic eigenvalues.

E, = E+—-BB. (5.31)

= AT+

mn = Ar+ (¢, —¢,)Knn, (5.32)

5.5. Special case : axisymmetric stress—existence and stability

Suppose that, throughout the shock transition layer, the stress tensor is of the
uniaxial form ¢ = o,0n+ 0, (I—nn), where ¢, and o, are scalars. Then the deviatoric
stress is of the form S = 1 (3nn—1), where 1 = %(a,, —a,). Note that the only way to
change S is to change its Euclidean magnitude—its direction is constant. If one
hypothesizes a sub-section of the shock transition layer throughout which a pressure-
insensitive non-hardening yield condition is satisfied, then a change in S is necessarily
accompanied by a change in the direction of S which, as just noted, is impossible for
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gencralized uniaxial stress states. Therefore, (S) = 0 across any sub-section of the
shock transition zone that is at yield throughout. In other words, the jump in stress
across such a sub-section must be isotropic, meaning that the jump in stress must be
of the form {(6) = —{p)> L. The only way the jump in stress can be non-isotropic is
if every state throughout the sub-section is below yield; such a stress jump must
therefore propagate at an elastic wave speed.

Suppose a shock transition zone is Aypothesized to consist of a “plastic zone”
throughout which the yield condition is satisfied and an “elastic zone™ throughout
which the stress state is below yield. Using (8> = 0 in (5.30) shows that, within the
plastic zone, either {p)> = 0 or the plastic zone must have the propagation eigenvalue

‘= K{p>
T AP —KKKT

This plastic eigenvalue depends on both the jump in pressure and the jump in tem-
perature. If thermomechanical coupling is neglected (i.e. if § = 0 or (T) = 0), then
the eigenvalue reduces to the known (Morland, 1959 ; Milne et al., 1988) purely
mechanical prediction: x = K. If the shock profile is to be stable, the hypothesized
accompanying elastic zone must also propagate with the eigenvalue x = K, but since
K is not an elastic eigenvalue as defined by (5.32), an accompanying elastic zone must
be ruled out. Therefore, the shock must be entirely elastic (i.e. entirely below yield);
entirely elastic—plastic (i.e. entirely at yield) ; or a mix of elastic and elastic—plastic,
with the jump in stress being zero across the elastic—plastic sub-section(s). By (2.27),
the latter scenario is possible only if the shock is quasi-static.

Suppose that a shock in a thin bar is to be modeled by simply taking the normal
stress as non-zero with all other stress components as zero. Then a jump in stress
across any sub-section of the shock transition layer is necessarily accompanied by a
jump in deviatoric stress. Therefore the entire sub-section must be below yield, and
the shock must propagate at an elastic wave speed. For elastic isotropy, this elastic
wave speed is \/E/p, where E is Young’s modulus. This elastic wave speed is not one
of the elastic wave speeds derived in Section 5.4, which were obtained by employing
the jump condition (2.22) which is not sensible for a shock in a thin bar. For a shock
in a thin bar, lateral strain may jump. Only continuity of the normal component of
displacement may be sensibly enforced. Taking only the normal component of stress
as non-zero and enforcing continuity of normal displacement, the entire analysis
leading up to (5.29) may be modified to show that (5.29) is valid for the thin bar
stress state even though (5.1) is not valid.

(5.33)

6. SUMMARY AND CONCLUSIONS

An approximation of a general shock by a smooth wave is legitimized in Section 3
by showing that changes across a shock of internal energy and, therefore, of variables
such as stress and entropy (defined by constitutive derivatives of energy) agree until
third order in material time rates of fundamental field variables with the changes
predicted from a smooth wave analysis. This result, which is independent of the
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constitution of the material, corrects a common misconception that entropy changes
across the shock must be small in order to approximate the shock by a smooth wave ;
even if entropy changes are significant at first order (as with elastic—plastic waves) the
change in entropy predicted by a smooth wave approximation will agree until third
order with the actual change across the shock. For the special class of steady shock
waves whose reference configuration images propagate without rotating, the Taylor
expansion of the Hugoniot function for a smooth wave of the same type, evaluated
at the state just ahead of the wave, is shown to have coefficients of zero for every
term, which concurs with the shock value of zero for the Hugoniot. This shows that
a smooth wave provides a very accurate, possibly exact, representation of the sequence
of states experienced by a material particle during passage of a shock wave of this
class. For this special shock wave class, we also showed that the rate forms of the
conservation of momentum and compatibility are identical for shocks and smooth
waves, both at the states just ahead of and just behind the waves, and for all orders
of material time rate.

Having legitimized the approximation of a shock by a smooth wave, several new
large and small deformation steady thermoelastic—plastic shock wave existence con-
ditions are deduced by integrating the maximum plastic work inequality across the
shock. Inclusion of thermal effects in elastic—plastic shock analyses leads to shock
existence conditions that are not quite as restrictive as those obtained using a purely
mechanical analysis, except when the material is non-hardening. If thermomechanical
coupling is neglected, the existence conditions reduce to those derived by Drugan and
Rice (1984) and Drugan and Shen (1987, 1990). Consequently, neglect of ther-
momechanical coupling may rule out the existence of shocks, or, as shown by Drugan
and Shen (1987), may require that the shocks propagate only at an elastic wave speed.
Thus we have rigorously shown, possibly exactly for steady-state non-rotating shocks
and to an accurate approximation for general shocks of low to moderate strength,
that propagating surfaces of discontinuity in solutions of purely mechanical elastic—
plastic boundary-value problems are required by the underlying laws of ther-
modynamics to satisfy the restrictions derived by Drugan and Rice (1984) and Drugan
and Shen (1987, 1990) when thermal effects are neglected, and we have derived
the generalizations of these restrictions when thermal effects are included in the
formulation.
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