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ABSTRACT

A variational formulation is employed to derive a micromechanics-based, explicit nonlocal constitutive
equation relating the ensemble averages of stress and strain for a class of random linear elastic composite
materials. For two-phase composites with any isotropic and statistically uniform distribution of phases
(which themselves may have arbitrary shape and anisotropy), we show that the leading-order correction
to a macroscopically homogeneous constitutive equation involves a term proportional to the second
gradient of the ensemble average of strain. This nonlocal constitutive equation is derived in explicit closed
form for isotropic material in the one case in which there exists a well-founded physical and mathematical
basis for describing the material’s statistics: a matrix reinforced (or weakened) by a random dispersion of
nonoverlapping identical spheres. By assessing, when the applied loading is spatially-varying, the magnitude
of the nonlocal term in this constitutive equation compared to the portion of the equation that relates
ensemble average stresses and strains through a constant “overall” modulus tensor, we derive quantitative
estimates for the minimum representative volume element (RVE) size, defined here as that over which the
usual macroscopically homogeneous “‘effective modulus™ constitutive models for composites can be
expected to apply. Remarkably, for a maximum error of 5% of the constant “overall” modulus term, we
show that the minimum RVE size is at most twice the reinforcement diameter for any reinforcement
concentration level, for several sets of matrix and reinforcement moduli characterizing large classes of
important structural materials. Such estimates seem essential for determining the minimum structural
component size that can be treated by macroscopically homogeneous composite material constitutive
representations, and also for the development of a fundamentally-based macroscopic fracture mechanics
theory for composites. Finally, we relate our nonlocal constitutive equation explicitly to the ensemble
average strain energy, and show how it is consistent with the stationary energy principle.

1. INTRODUCTION

A powerful approach to the mathematical modeling of the stress and deformation
response of composite materials when subjected to applied loading is one that seeks
to derive information on the macroscopic, or overall, constitutive behavior. In this
approach, details of the (generally) complex, strongly heterogeneous microstructure
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are not considered directly, which would inevitably involve enormous numerical
calculations, would be specimen-specific, and from which generalized information
would be difficult to elicit. (Some progress has been made numerically by assuming
periodic microstructures, but such are difficult to realize in practice.) Instead, one
analyzes material elements having a length scale (the macroscale) that is sufficiently
large compared to the microstructural length scale (the microscale) that the material
can be accurately treated as being homogeneous with spatially constant “average” or
‘“overall” properties. The most firmly based of such approaches are those employing
variational principles which supply strict upper and lower bounds on the overall
constitutive moduli. Perhaps the most widely and profitably used such principles are
those of Hashin and Shtrikman (1962a, b), as summarized and generalized by Willis
(1977, 1981, 1982, 1983). The latter three articles are also reviews that provide detailed
background and reference related work by other authors.

A question of fundamental importance to the application of such constitutive
models that describe the composite response via homogeneous ““overall” properties
is the minimum size of a material representative volume element (RVE). There appear
to be two significantly different ways to define “‘representative volume element”.
One definition arises from the perspective that in order to characterize macroscopic
composite constitutive response, one must recognize the statistical nature of the
microstructure of actual composites. This perspective leads to the conclusion that the
smallest RVE for which a macroscopic “effective’ constitutive theory could apply is
one that is sufficiently large to be statistically representative of the composite—that
is, to include effectively a sampling of all possible microstructural configurations that
occur in the composite. This is the perspective generally adopted, and it leads to
statements of the type that the RVE must include a very large number of the com-
posite’s microheterogeneities (such as grains, inclusions, voids, cracks, fibers, etc.).
Such statements are invariably qualitative ; thus articles on the topic of overall com-
posite response generally state that the RVE must be chosen “sufficiently large”
compared to the microstructural size for the approach to be valid.

There is another, perhaps more pragmatic, definition of “representative volume
element” : the smallest material volume element of the composite for which the usual
spatially constant “overall modulus” macroscopic constitutive representation is a
sufficiently accurate model to represent mean constitutive response. We adopt this
definition for RVE in the present paper. [It is important to emphasize that attention
here is focused on the mean response (defined precisely in Section 2), upon which
possibly large fluctuations associated with local microstructural detail are super-
imposed.] In remarkable contrast to the large RVE sizes (with respect to mic-
roconstituent size) implied by the statistical perspective described in the first definition
above, it will emerge that quantitative estimates of RVE size for the definition we
adopt here are very much smaller than these, for the entire range of reinforcement
concentration level. An important related question is: When loading applied to
the composite generates, in material modeled by an “overall modulus™ constitutive
relation, stress and strain fields that vary too rapidly for consistency with the minimum
RVE size introduced above, what form should the macroscopic constitutive equation
take?

In the present work, we develop an explicit nonlocal macroscopic constitutive
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model based on the micromechanics of the composite material from a variational
characterization of Hashin—-Shtrikman type. We show that for two-phase composites
with any isotropic and statistically uniform distribution of phases (which themselves
may have arbitrary shape and anisotropy), the leading-order correction to a macro-
scopically homogeneous constitutive equation consists of an additional term pro-
portional to the second gradient of the ensemble average of strain. We obtain an
explicit closed-form expression of this nonlocal constitutive equation when the phases
are isotropic, in terms of an integral of the two-point distribution function of the
phases. This is explicitly evaluated in the only case for which a physically and math-
ematically sensible model for the two-point distribution function is available : a matrix
reinforced (or weakened) by a random dispersion of nonoverlapping spheres. In this
case, Markov and Willis (1995) have shown how to express the two-point distribution
function in terms of a single integral involving the radial distribution function for the
sphere centers. We evaluate this integral in closed form when the radial distribution
function is that derived by Wertheim (1963) from the statistical mechanics model of
Percus and Yevick (1958). The resulting nonlocal constitutive equation is then
employed to deduce explicit quantitative estimates for the minimum RVE size needed
for the macroscopic constitutive response to be represented accurately by the usual
homogeneous overall modulus.

The only related work of which we are aware [apart from a very compressed general
discussion by Willis (1983)] is that of Diener er al. (1984), who derived bounds on the
Fourier transform of the nonlocal overall operator that relates the ensemble averages
of stress and strain, in the special case of a two-phase isotropic composite comprised
of nearly spherical grains of equal size, with two-point probabilities chosen on the
basis of a simple “cell-structure” model. Also, Willis (1985) analyzed the nonlocal
influence of density variations in an otherwise homogeneous medium, assuming a
simple exponential form for the two-point correlation function.

The plan of the paper is as follows. In Section 2 we summarize Willis’ (1977) concise
derivation of the Hashin—Shtrikman variational principle for deterministic composite
microstructures, and then his (Willis, 1977, 1982, 1983) generalization of this to treat
random microstructures, all adapted to the infinite medium to be analyzed here. This
permits formulation, in general terms, of the problem of determining a nonlocal
constitutive equation, which involves the solution of a set of integral equations.

Section 3 lays out our derivation of the nonlocal constitutive equation for two-
phase composites, proceeding in stages from the general situation (arbitrary phase
distribution and shape, arbitrary component material anisotropy) to the one specific
class for which we believe there is sufficient physical and mathematical basis for
deriving explicit closed-form results : an isotropic matrix reinforced (or weakened) by
a random distribution of nonoverlapping isotropic spheres of a different material.

We employ this explicit nonlocal constitutive equation in Section 4 to produce
quantitative estimates of the minimum RVE size for which the usual constant-effective-
modulus constitutive equation accurately represents composite response, by com-
paring the magnitude of the nonlocal to local terms in our new constitutive equation
when spatially varying loading is applied. This is done for a very wide range of
reinforcement concentrations, and for the bounding extremes of the “‘reinforcing”
spheres being voids and rigid particles while the matrix material is permitted to
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adopt several sets of elastic moduli values that encompass large classes of structural
materials. We also analyze the specific systems of an aluminum matrix reinforced by
alumina particles and vice-versa.

Finally, in Section 5 we employ our nonlocal constitutive equation to derive an
explicit expression for the ensemble average strain energy, for random two-phase
composites with isotropic distributions of phases. We also show how the nonlocal
constitutive equation is consistent with the stationary energy principle.

2. FORMULATION

We will analyze linear elastic composite materials with firmly-bonded phases. The
approach will be to employ variational principles that describe the overall response
of random composites. These are generalizations, developed by Willis (1977, 1981,
1982, 1983), to the Hashin-Shtrikman (1962a, b) variational principles.

We shall first summarize Willis’ (1977) derivation of the Hashin—Shtrikman prin-
ciple for any specific composite material, and then show how this is adapted to analyze
random composites. Because we are concerned with relating macroscopic to local
constitutive response under spatially-varying applied loading, and to facilitate explicit
solutions, we consider an infinite body with the only applied loading being a body
force vector field f(x) that decays sufficiently rapidly when |x]| is large, where x is the
position vector and |x| its magnitude. The equations governing the equilibrium stress
and deformation fields in such a linear elastic composite material are then

Veo+f=0 [do,/0x+f;,=0] (la)
e =sym(Vu) [e; = (0u,/0x;+ 0u;/0x;)/2] (1b)
6 =L(x)e [o,= L(X)eul, (1c)

where @, e are the stress and infinitesimal strain tensors, u the displacement vector, L
the fourth-rank elastic modulus tensor which is a function of position x due to local
heterogeneity, sym denotes the symmetric part and, throughout the paper, lower-case
Latin subscripts denote Cartesian components and obey the Einstein summation
convention (except where noted).

An effective solution approach to system (1) is to reformulate by introduction of a
homogeneous ‘‘comparison” body with moduli (independent of x) L, [and with solu-
tions o, €;, U, to the same applied f(x)], so that

o =Lje+r, 2
where 7 is the “stress polarization” tensor defined as
t=(L-Ly)e. €)
Substitution of (2) into (1a) gives
V:(Lee)+(V-t+ =0, 4
the solution of which for e is (adapting Willis, 1977)
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e(x) = e,(x)— f Fy(x—x")z(x)dx’, (5)

Q

where

, _ G (x— X))
[Co(xX~x)]ju = ox, 0x,

; (6)

).k

the notation indicates symmetrization on (ij) and (k/), Q denotes the (infinite) domain
of the body, and the singularity of I, is interpreted in the sense of generalized
functions. Here, Gy(x) is the infinite-homogeneous-body Green’s function, whose
components are defined by the differential equation

2*[Gy (X)]m

5 = 7
axi axl Cljl\[ + 51("1 o(x) 0’ ( )

where ¢, are the components of L, J,,, is the Kronecker delta and d(x) is the three-
dimensional Dirac delta function. Eliminating e in (5) via (3) gives

(L(x) —Lo) ~'z(x)+ J To(x =x)(x) dx” = ey(x). ©)

Q

Willis (1977) observed that the self-adjointness of (8) leads directly to the Hashin—
Shtrikman variational principle

0HA (1) =0, )]

where #(t*) is the functional

H(t*) = .[

Q

[f*(X)(L(X) —Lo) 7't (x) +1¥(x) [ [o(x—x)r*(x') dx’

Q
— 21:*(x)e0(x)]dx, (10)

and t* is any choice for z. It follows via (8) that the stationary value of 5#, attained
when t* = 1, is

Q

H(1) = —j T(X)ey(X) dx. (11)

The above formulation provides a method for finding solutions to the stress and
deformation fields locally in an inhomogeneous composite (but such problems are, in
general, prohibitively difficult). To adapt the formulation to provide estimates for
macroscopic, mean or ensemble average fields, we follow Willis (1977, 1983) and treat
random composites. We identify by « individual members of a sample space &,
define by p(«) the probability density of « in .#, and define a characteristic function
1(x;2) = 1 when x lies in phase r, and = 0 otherwise. Then the probability P,(x) of
finding phase r at x [that is, the ensemble average of y,(x;2)] is
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P.(x) = (%)) = J X (% 0)p(a) da, (12)

&

and the (two-point) probability P,(x,x") of finding simultaneously phase r at x and
phase s at x is

P (x,x") = {3 (x)x(x)) = J/x,(xm)x.‘(xta)p(a) da. (13)

#

If each phase » is homogeneous with moduli L,, where r = 1, 2, ..., n, then L(x) of
(1c) in sample 2, and its ensemble average, are

L(x;2) = 2 L (x:2) = (L(0> = ¥ LP,(x). (14)

Now, the variational approach summarized above is applied by choosing the most
general trial fields for =* allowed by restriction to one- and two-point correlations in
(10) (see Willis, 1982), since higher-order correlations are extremely difficult to deter-
mine in practice

n

(x:0) = Y (0 (x;:a). (15)

r=1

We further assume the material to be statistically uniform, meaning that P,(x) and
P,(x,x") are insensitive to translations; thus P,(x) reduces to a constant, P, and
P, (x,x") = P,(x—x"). For such materials, one typically makes an ergodic assump-
tion, that local configurations occur over any one specimen with the frequency with
which they occur over a single neighborhood in an ensemble of specimens. In this case,
P, becomes the volume average of y,(x) and thus is simply the volume concentration ¢,
of phase r. Then, substitution of (14), and (15) into (10) and ensemble averaging
gives

n

CAIEDY c,j 7 (X)[(L, —Lo) ™ '7,(x) —2eo(x)] dx

r=1
+ Z Y J 7,(X) [J Iy(x—x)t(x)P,,(x—Xx) dx’] dx. (16)
r=1s=1JO Q
This is stationary when
(L, —Ly) 't (x)c, + 3. J Fo(x—x)1,(xX)P,,(x—x)dx' = e;(X)c,, r=1,2,...,n
s=1Ja

(17)

Substituting (15) (for 7) into (5) and ensemble averaging yields the approximation
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eyx) = eo(x)— Y. cSJ Iy (x—x)7,(x) d’, (18)

s=1

substitution of which into (17) gives finally
(Lr - LO) - 1T,(X)C, + z J ro (X - x/)[Prs(x - X/) - C,CA.]T_S.(X’) dx’ = <€>(X)C,.
s=1J40

r=12,...,n. (19)

Observe that (19) is a set of n integral equations for 7,(x) in terms of {e)(x).
Our goal is to find a constitutive equation that relates {e>(x) to {e>(x), valid when
these do indeed vary with x. Taking the ensemble average of (2) gives

(o) (x) = Ly {e)(x) +<t)(x). (20)

Approximating 7(x; &) by (15), ensemble averaging of that equation yields
(X)) = ) o1.(x). 2D
r=1

Thus our desired constitutive equation is (20) with (21), so we must solve the integral
equations (19) for ,(x).

3. DERIVATION OF A NONLOCAL CONSTITUTIVE EQUATION FOR TWO-
PHASE COMPOSITES
3.1. General structure

To facilitate explicit results, we will now restrict the analysis to two-phase
composites, for which (see Willis, 1982)

Prs(x - x/) — 6 = Cr(ér.c - C.\‘)h(x - xl)ﬁ (HO Sum) (22)

where #(x —x’) is the two-point correlation function. Then (19) becomes

(L, — L) '1,(x)c, + 22: ¢, (8,,—c,) .[ [Ty (x —xVa(x —x")]7,(x") dx’

Q
=cled(x). r=12(23)

We will employ Fourier transforms to solve (23). The three-dimensional Fourier
transform of a function f{x) [which decays sufficiently rapidly for |x| — o for con-
vergence of (24)] and its inverse are defined as

~ _ | U
&) = J Jxyefrdx, fix) = 8?] A&e " dE, (24)

where i = ./ —1, s a vector, and &+ x denotes scalar product. Thus, taking the 3-D
Fourier transform of (23) gives
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(L —Lo) '8 + Y e(6, =)o x @R = e @@, r=1.2, (29)

having noted that the integral term in (23) is a convolution, and that the Fourier
transform of the bracketed term is itself the convolution

o 1 ~ ~
Lo ) (&) = g—j LoE—-&nE)de =T, (26)
Q

1'{3

which will, as indicated, henceforth be written for compactness simply as I'. Rewriting
(25) as

T O = (&), r=1.2 27

i

where
Tr? ! (C) = (Lr - L(]) ! Cp 6rs + Cr(oﬂrs - Cs)ra (no Sum) (28)

(27) can be solved for %,(¢) to give
79 = ¥ T.@e®@. r=1.2 29)

Thus we must invert (28). Doing so, noting carefully that it is a matrix of 4th-rank
tensors whose products do not commute, we find

-~ -~ N 5"\
T,(&) =0L(L ' +c, 0L, 4+, L) ! [irl +dL, + 0L, —(SL,} (no sum)

(30)
where here and in the sequel,
oL, =L, —L,. (31)
Now the Fourier transform of (21) is, for two-phase composites,
2
EE =) oi(d). (32)
r=1
Substituting (29) into this gives
2 2
&) = ) Y T,(8)el& (@) = (THEEX Q). (33)
r=1s=1

Employing (30) to carry out the sum appearing in (33) results in
(T = ¢, 6L, (I +¢, 8L, + ¢, 6L,) " "(F ' +6L,)
+C25L3(r41+c,5L2+C25L1)71(F71+5L1). (34)
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Finally, to obtain {t)(x), as (20) shows is needed for the macroscopic constitutive
equation, take the inverse Fourier transform of (33)

(D (x) = J (TH(x—x"){er(x') dx". (35)

The actual evaluation of the right-hand side of (35) is extremely difficult for general
{e>(x’). Since we desire an explicit representation for {(r)>(x), we will approximate
{e>(x") by the first three terms of its Taylor expansion

(ey(x') & (eX(x) + (X' = x)V{e)(x) +3(X —x) (X —X)VV{e>(x)

0
= <X+ (¥ —x) 5 - ()X +H(X) =) (xk —3) 5 £ = (@) (36)

Then (35) becomes

(%) = U (TH(x—x") dX’}<e>(X) + U (THr(x—x")(x"—x) dX’:l Vier(x)
Q Q

+[ J (TH(x—X) (X —X)(X' —X) dx};vwexx). (37)
Q

The bracketed integrals in (37) fortunately do not require that the inverse Fourier
transform of {T)(&) be determined explicitly ; instead, notice from (24), that

J (THx—x)dx’ = [ (TH(x)dx = (THE=0), (38)
Q Q

J (THx—x)(x' —-x)dx’ = —j (THx)xdx = i(V(TH(E = 0), (39
Q Q

J (THEx—x)(X —x)(x'~x)dx" = J (Ty(x)xxdx = —(V,V(T))(€ = 0),
Q

Q
(40)
where V, = 0/0€.

3.2. Comparison with previous results for constant {e)

Before obtaining explicit new results for the general case when <{e)>(x) does indeed
vary with x, let us make contact with previously published results for the case when
{e)> does not vary with position. In this case, (35) reduces precisely to (37) with only
the first right-hand-side term, and combining this with (20) and (38) gives

(o) = Lole) + () = [Ly +<{TH(0)]<e) = L<e), (41)

where this determines L, the constant “overall” or “‘effective” modulus tensor. To
evaluate {T)(0), examination of (34) shows that we will need to evaluate ' at £ = 0,
which from (26) is
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~ 1 - - 1 N - ,
L@ =@, )(0)=@f To@)h(g) dc'=[Q f To(@h)e dé]

= [j y(x—x)A(x") dx’] = J Iy(x)h(x)dx = P". (42)

Here we have used the Fourier transform of a convolution, and the facts that
o(—x) = [y(x) and ['y(—&) = ['y(&). Thus, from (41) with (34) and (42), we find the
effective modulus tensor for any two-phase composite with constant {e) but arbitrary
phase geometry, distribution and anisotropy to be

L=Lo+c, 6L, (P~ '+¢, 8L, 4+¢,0L,) (P~ ' +L,)
¢, 0L, (P~ +¢, 0L, +¢, 8L,) ' (P~ 4+ 0L,). (43)

Willis (1982) employed a Radon transform approach to derive a Hashin—Shtrikman
estimate for L. when <{e) is constant, for the same very general class of two-phase
composites as that just described. He found [(6.21) and (6.22)], with P’ defined as in
(42),

2

2 -1
L= {z c,[I+5L,P']1} Y e [1+6L,P1 'L,

=1 s=1

2

2 —1
=Lo+ {Z c,[l+6L,P’]‘} Y ¢ [1+8L,P] 6L,

r=1 s=1
= Lo+ (P +0L,)(P'~ ' +¢, 6Ly +¢,6L,)" "¢, 5L,
+ (P 8L (P +¢, 6L, 4+, 8L,) "¢, 5L,
= Lo+[(P""+c, 6Ly + ¢, 6L,) + ¢, (8L, —SL)] (P~ +¢, 6L, +¢5 8L,) ¢, 5L,
+[(P""" ¢, 8L, + ¢, 5L, ) 4 ¢, (3L, —8L,)[(P"~" +¢, 8L +¢5 0L,) "¢, 6L,
(44)

which, multiplying out the products and collecting all terms premultiplied by L, and
all premultiplied by dL,, can be shown to reduce precisely to (43). Here, 1 is the
fourth-rank identity tensor. Thus, we have confirmed that our results from the present
Fourier transform approach agree with those from Willis’ (1982) alternate Radon
transform approach when {e) is constant.

3.3. Results when phase distribution is isotropic

Now, to facilitate more explicit results for the general case that {(e>(x) does vary
with x, we henceforth restrict attention to composites that consist of isotropic dis-
tributions of phases, although the phases themselves may still have arbitrary ani-
sotropy and shape. This means that the two-point correlation function 4(x) introduced
in (22) satisfies
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h(x) = h(Ix|) = h(&) = h(E)). (45)

In order to evaluate (37), and hence (38)—(40), these and (34) show that we need
explicit expressions for I' and its first and second derivatives with respect to &,
evaluated at £ = 0. [Our earlier result (42) for I'(0) will simplify now in view of (45).]
The derivations of these are detailed in the Appendix, where we find

1 .
L) = EJ [,()ds =P, (46)
1gl=1
ar
=0 (47)
K O=r| T@BEE -5 ]ds[ " )rdr] (48)
aém aé,, - 47[ £§|:1 0 mSn mn j‘o r .

To evaluate (39), we compute from (34), using the notation 8( )/¢&,, =(),»
(T),,(8) = ¢, SLIKT T, I "K' +5Ly)
+¢, LK 'L, T 'K(I ™' +6L,)~ (¢, 0L, + ¢, SL,)KI'I,,T',  (49)

where we have used the fact that for any tensor A, (A™"),= —A'A A~', and have
defined

K=(@"'4¢,6L,+c,6L,)". (50)

Now applying (47) to (49) gives

(T, 0)=0], (51

meaning that the second right-hand-side term in (37) is identically zero.
To determine the last term in (37), we must evaluate (40), which requires taking
another derivative of (49). Doing so and applying (47) results in

(TY m(0) = ¢, SL,KI~'T,, I "K' ' 4+L,)
+¢, LKL 'T,,, L 'K(L " +6L,)— (¢, 6L, + ¢, SLOKC 'L, L' |, (52)

where the terms I' and I, are evaluated at & = 0, as given by (46) and (48),
respectively.

To summarize, we have found a nonlocal constitutive representation for two-
phase composites having an isotropic distribution of arbitrarily-shaped, arbitrarily
anisotropic phases, which has an error of O(|x —x’|*) compared to the exact result
involving (35). This is, from (20) and (37)—(41),

ey 53)

0x,, 0x,

(o) (x) = L{e>(x) —5<(T> . (0)
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where L is given by (43) with P of (46) replacing P’, and (T ,..(0) is given by (52)
with (46) and (48).

These results simplify substantially if the comparison moduli L, are chosen to be
the same as the moduli of one of the phases, say

L,=L, = 5L, = 0. (54)

For a matrix with moduli L, containing inclusions with moduli L,, this choice is not
only convenient but it has some theoretical support: Willis (1984) provided a very
general analysis based on a “self-consistent quasi-crystalline approximation,” in which
an integral equation for the ensemble average of the polarization outside an inclusion,
conditional on the presence of an inclusion at a specified location, was solved exactly.
The result was that the seif-consistent estimate for overall response was independent
of the choice of comparison medium, and therefore the same as the estimate delivered
by choosing the comparison medium to have the properties of the matrix. The choice
(54) is therefore adopted for the remainder of this work. Then, (43) and (52) simplify
to

L=Lo+c[0L) '+c,P]! (55)

(T m(0) = —c1c[(6Ly) ' + P17 'T,,[(0L) '+ P 7' |. (56)

3.4. Simplification when both phases are isotropic

In the interest of obtaining completely explicit expressions, we now examine the
case in which both phases of the composite are isotropic, although still of arbitrary
shape. The components of the comparison material modulus tensor L, (and hence
now L,) are

Cijtt = A 0,5 0+ (S 050+ 04 03), (37)
where, 4, u are the Lamé moduli; they are related to the bulk modulus x as
A=K —§ U (58)

To determine T'o(€) explicitly in this case, note first from (A.5) of the Appendix
and (57) that

Lo O]y = A+ W& &+ &R 8y = [EPIA+20)EE+ 1O —EE))  (59)

where &, = &,/1&|. Since the last of (59) is in spectral form, its inverse is

L (O)y = &+ (6,k 5‘,—&1)]. (60)

1
1€1° L+2u
Finally, using (58) and (60) in (A.6) of the Appendix gives

_ 1 2
[ro(g)]ijkl = ”|€|4{|§| (éy 5]ké[+§] l]\é[+gl /Iék+é llék) +” éf g C/} (61)

3k+4pu
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Upcoming calculations are most conveniently performed using Hill’s (1965) sym-
bolic notation for fourth-order isotropic tensors, viz.

L, =(3x,2u), (62)

in which the product of two isotropic tensors, say Ly and L,, is
LoLi = [(3x)(3x).(2w) 2p )] (63)
Under our present assumptions, P of (46) is an isotropic fourth-order tensor, with

from (57) and (58) the representation (since, e.g. P = Py,

. . 1 ~
Py =(xp —§#P) Oij O+ 1p(0y 0, +0,0,) = -J (o (&) dS. (64)
1l=1

4
Following Willis (1982), for each of the invariants P, and P, the integrand in (64),
given by (61), is independent of &, so one computes from (64)
3 3+ T7u
L =OQk,=—— P = = 65
Pukk Kp 3K+4ﬂ’ ijij 3KP+ 10”P H(3K+4/l) s ( )
so that in Hill’s notation
1 2
P= et (66)
3k+4p Su(3k+4p)

We also need I';y,..(0) in explicit form. Under present assumptions, this is an
isotropic sixth-order tensor. The most general isotropic sixth-order tensor has the
representation (see, e.g. Jaunzemis, 1967)

Lijtimn = C1 04041 O+ C 8,0 01+ C3 8 8100 01+ Cy 0 01 O
FCs5 0% 0 O+ Co Ot 0,5 01+ C7 04 04 O+ C5 01 0, Oy
+Cg 01 0 Ot + Cro Ging 0 O+ Cy 8,05 Ok C 12 04y 0, O
+C1350i, 04 O+ Cy40,, 00+ Cy5 04,0, Op, (67)

where C,~C,s are independent constants. Observe from (48) with (61) that I";;,,.(0)
has the symmetries [dropping (0)]

r‘[/‘kl,mn = Iﬂjil\'l.mn = l—‘iﬂk‘nm = Iﬂijl([.mrl = rkli/,n1rt; (68)
applying these symmetries to (67) shows that the number of independent constants

reduces to four, and that I ;,,,,(0) admits the representation

1 . . .

ﬁri;’ld,mn(o) = Al Ol'j 61\'1 6mn + A2 (511( 5/'1 Omn + oi/ Ojk 5mn)
+ A3 (50' 6km 5[11 + 51‘}' 5101 5/m + 5im 6/’71 61\'[ + 5[" 5_im 51{[)
+ A4 (5ik 5jm 5In + (sik 5jn 5Im + 5:‘[ 5jm 5kn + 51‘[ ajn 5km

+ 51’m 5»/’1\' 5/}1 + 5im 5]/ 6kn + 51’71 6»/'/\’ 5Im + 6in 5»}'[ 5/(»1)* (69)
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having defined
H= J h(r)rdr. (70)
0

To evaluate 4,—A,, we compute the following four invariants of I';y;,,,(0), from (69)
and from (48) with (61), observing that for each of these the integrand of the spherical
integral in (48) is independent of € on |£| = 1,

1
—I_‘,‘,‘kk,mm(o) = 27A| + 18A2 +36A3 +24A4 = 0

H
1
Eri,,-j_mm((]) = 9A] +36A2 + 12A3 +48A4 = 0
1
ﬁriikl.kl(o) =94, +64,+424,+484, = It an
1 3k+16u
I 0= 7 o RO 1
HI“,,,(,J,{(O) 34, +12A4,4+24A4,+66A, K +4) (71)
Solving the algebraic system (71) gives
p =i 3k+u _ _L 3k+8u
"T105 u(Br+4p)” 35 u(3k+4p)’
1 3 3 3k+8
A, = K+ p K+3u (72)

T35 uGr+4p)” Tt T 140 puGr+4p)

To render the nonlocal constitutive relation as explicit as possible, we employ Hill’s
symbolic notation to compute the following combination that appears in (55) and
(56)

- ~1 -1 _ . ! 1 3(k+2u) !
B =[(0L,)" +c,P] -|:(3(K| —K), 2(u _M)> +C2<3K+4ﬂ’5ﬂ(3l€+4ﬂ)>j|

=< 3(k, — k) 3k +4p) 10p(py — )Gk +4p)

= , 73
3+4u+3c,(k, —k) Su(3k+4u) +6¢, (1, —u)(K+2u)> (35 2445) (73)

meaning that
Bijk[ =(xp _gllB)arj O+ pp(dy 5},'/ +0y 5,‘k)- (74)

Using (73), one computes for (55) the explicit result

k3, +4p) +4c, p(k, —K)
3, +4u—3c (k) —K)

>

L =L +<{T0) =Gx..20,) = <3

w9k +8u)(1 —cy )+ 3k, (24 3¢, ) +4up, (3 +2c|)>

S 40 + 6(1— ) (i —m (K +20) (75)
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(We have verified that this is identical to (7.1) of Willis (1982) when the choice L, = L,
is made.) Finally, to determine (56) explicitly, we employ (69) with (72)—(74)

1

= 1
_ ¢,c.H LTS i1mn(0) = Bijo, [ﬁ | R (0)]8 ki

=D, 8,041 0+ D3 (dy 0y Oy + 05 6 O

+ D3 (84 Otm O+ 045 Ok Oy + Oim 8y Ot B4y O O

+ D4 (84 0 04+ 0k 8, 04+ 641 0y O + 01 Oy O

A0 Ot Ot 4By 0t Opn + 01 Ot Oy 01 01 Opn) (76)
where one computes, defining ok = k|, —k, du = u, — p and using (71) to simplify,

D, =334, +245+243)(3ks—2up) s +44, 13
SGBr+4p)[20u(3k+8u) —21 dxu] —12¢, ox dpu(3r+ )
21(3¢, Sk + 3k + 4w [Su (3 + 4p) +6¢, du(x +2u)]°

—20u(0p)* Br+4w)(3x +8p)
753k +adp) +6¢, du(k+ 2]’

D, = 6A3KBIJB+§A4113(3KB_2#B) = '%Dl-

= 8udu(3x+4pn)

D, = 41‘12#2 =

D, =443 = —3D,. (77

Thus, our nonlocal constitutive representation for two-phase composites having an
isotropic distribution of isotropic phases is (53) with (75)—(77). Notice that all of the
results are completely explicit except for the evaluation of H, given by the integral in
(70). To determine this, one must have explicit information about the two-point
correlation function A(r) of the random composite material under consideration.
Expressions for A(r) based on sound physical and mathematical reasoning are scarce.
As an example, in the next section we evaluate H for what may be the only case yet
extant of such a well-founded physical and mathematical model of a two-point
correlation function.

3.5. Explicit results for a matrix reinforced by a random dispersion of nonoverlapping
identical spheres

We now further specialize our two-phase composite, already specialized to an
isotropic distribution of isotropic phases, to the case of an isotropic matrix (Phase 2)
reinforced (or weakened, depending on the moduli chosen) by a random dispersion
of nonoverlapping identical spheres (Phase 1). Markov and Willis (1995) have recently
shown that the two-point correlation function of a random dispersion of non-
overlapping spheres can be expressed as a simple one-tuple integral containing the
radial distribution function. In the present notation, their results are

h(r) = B (r) + h*(r). (78)

where /™(r) is the “well-stirred” approximation, which they showed is tenable at
most when ¢; < 1/8, and thus 4*(r) is a correction term. For spheres of radius a, and
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defining p = r/a, they found (and we have verified)

3p  (143c))p> 9eip* | c1p®
—C)——+ = <p<2,
1—c1[(1 WYt g 160 2240 S
" = AV _ _ 23
») { ¢ (p—H*(36—-34p—16p°—p ), 1<p<d
l—e¢, 2240p
0, 4<p,
(79)
and
( 13 p+2
I—J Flp,mpm)dn, 0<p<2,
—c ),
I P p+2
h*(p) =J —e U F(—p,—n)ﬁ(n)dnwhj F(p,n)ﬁ(n)dn} 2<p<4
1 2 P
g P p+2
ﬁU F(—p,—mn)pn) dn+j F(p,mBn) dn], 4 <p,
“ 1 p—2 P
(80)
where
3n2+p—n’4—6(p—m+(p—n7
= 31
Flo,) 160y : @81
and
B =g —1, (82)
where g(n) is the radial distribution function (to be discussed later).
Now, for our nonlocal constitutive equation we need
HEJhUWﬂ=thmM®=aﬂ~MWM+W@WMA (83)
0 0 0

Using (79), the first part of the last integral in (83) is easily evaluated

7 s (e 3p°  (1+3¢)p®  9cip® | cip’
L ’ (p)pdp_l—cl{ﬁ [(1_")9A4+ 6 160 T 2240 |7

N “ei(p—4)*(36—34p—16p° —p) d
, 2240 P

_ 2—9c¢,
T 5(1—cy)

(84)

To evaluate the second part of the last integral in (83), substitute from (80)
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f i (p)pdp = ;_—{J [ J " R dn}p dp

+J [ j " (= p,—mBiny dn + J " FoumBin) dn]pdp

2 0

0 0 p+2
+J U F(—p,—n)pB(n)dn +J Fp,m)B(n) dn]p dp} (85)
p=2 /

4 )

Since F(p, ) is known explicitly for the full range of its arguments, while as discussed
later this is not true (at least analytically) for (), let us interchange the order of
integration of the integrals appearing in (85). Thus,

2 p+2 4 2
J U Flp.n)B(n) dn]p dp =J U F(p,n)pdp}ﬁ(n) dny, (86a)

J U F(—p,—n)B(n) dn+ j Flp, mB(n) dan dp

=J U F(—p,— n)pdp]ﬁ(n) dn+_[ U"F(p n)pdp}/?(n) dn

+J U Flp,np dp}ﬂ(n) dn. (86b)

rUp F(ﬂo,—n)ﬁ(n)df1+r+ F(p, n)ﬂ(n)dn]pdp

4 4

=JU F(—p,—n)pdp]ﬁ(n)dwj U F(— p,—n)pdp}ﬂ(n)dn

+ J U Flp,np dp]ﬂ(ﬂ) dn+ U Fp,mp dp}ﬁ(*}) dn. (86¢c)

4

Substituting (86) into (85) and combining terms, (85) finally reduces to

J‘mp)pdp:l%rw F(p,n)pdp+J" F(~p,—n)pdp}/3(n)df1
0 1

2 n—2 n

=‘—1icj OLE rnl;q(rz)—lldn, (87)
1 Ja (S P

-4
having evaluated the integrals in the bracket via substitution of (81), and then sub-
stituting finally from (82).

It remains to evaluate the integral involving the radial distribution function g(p) in
(87). The best-known statistical mechanics model for the radial distribution function
of a dispersion of hard spheres is that of Percus and Yevick (1958), who obtained an
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integral equation for g(p). Wertheim (1963) derived an exact solution for this integral
equation, expressed as a closed-form Laplace transform. Interestingly, this will prove
sufficient to provide an explicit result for H. Wertheim’s solution is, written in terms
of p = r/a [instead of his x = r/(2a)],

gp) =0, 0<p<2
J » 8sL(2s) , (88)

PR A = 2+ M) ¢

where
L() = 12c1[<l+ %)ur(l +2c1)],

M) = (1—c)*P +6¢,(1—c) +18¢it—12¢,(1 +2¢)). 89)

Using the first equation of (88), the last integral in (87) becomes

j plg(p)—11dp =j plo(p)—1]1dp+2, (90)
2 0
and noting that
© 1
j pe *dp=—, on
0 5°

we find from (88)—(91)

J plo(p) ~11dp = ling j ply(e)—11e " dp = 151{
0

0

8sL(2s) _ l
12¢,[L(25) + M(2s) e*] sz}

L {8s3L(25)—1261[L(25)+M(25)ez"]}_ 10—2¢, + ¢
- s—=0 -

12¢,5°[L(25) + M(2s) e*] 5(1+2¢,)
(92)
Summarizing the results from (83)—(92), we have found
* a*> (2—9c, 10—2¢, +¢c
H = = -
L h(ryrdr l—cl{ 5 +c,[2 s(1+2¢)) ]}
2—c)(l—¢)
H=d—"—
CTS1426) 3)
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Fig. 1. The statistical factor H (normalized by ¢?) as a function of reinforcement volume concentration ¢,
comparing the result (84) obtained solely from the well-stirred approximation to the complete form (93)
incorporating the Percus—Yevick correction.

Figure 1 compares H/a® from the approximate expression (84) that used only the
well-stirred approximation for A(p), with the complete form (93) that incorporates
the correction due to the Percus-Yevick model.

4. QUANTITATIVE ESTIMATES OF MINIMUM RVE SIZE

One principal objective of the present work is to obtain quantitative estimates of
the minimum size of a representative volume element of composite material for which
the usual constitutive model, that relates average stress to average strain through a
constant “‘overall” or “‘effective” modulus tensor, is sensible. That is, essentially all
extant models of the constitutive response of elastic composite materials develop
constitutive equations of the form

(o) = Lie), (%94)

where L is a constant tensor that characterizes the macroscopic response of the
composite. We derived an example L in (43), valid for any two-phase composite, via
the Hashin—Shtrikman variational principle and Fourier transforms, confirming an
alternate derivation previously performed by Willis (1982). The typical statement
made is the highly qualitative one which notes that (94) is expected to be valid
for material volume elements that are much larger than the microscopic scale, or
“microscale”, of the composite. We think it important to derive quantitative estimates
of the minimum size of a material representative volume element for which a model
of the type (94) accurately describes constitutive response. Such knowledge will have
several significant implications; for example, it will permit estimates of the smallest
composite material structural component size than one might hope to analyze by
employing a macroscopic constitutive equation of type (94). It should also allow
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assessment of the minimum requirements for which a macroscopic theory of fracture,
of the type already successfully employed for ‘“homogeneous” materials, might be
applicable to composites. An exploration of this latter question will be reported
elsewhere.

Our approach to addressing this issue will be to employ the explicit nonlocal
constitutive equation we derived in the previous section. We will consider ensemble-
averaged strain fields that vary with position, {e>(x), and determine at what wave-
length this variation will cause the nonlocal term in the constitutive equation to
produce a nonnegligible correction to the local term. This will provide an estimate of
minimum RVE size. Thus, the quantitative results we obtain will be for the type of
composite for which we were able to render the nonlocal constitutive equation com-
pletely explicit: namely, two-phase composites consisting of an isotropic matrix
reinforced (or weakened) by a random dispersion of isotropic spherical particles.

The nonlocal constitutive equation for this specific class of composites is (53) with
(75)—(77) and (93). Thus we will determine the RVE length scale by comparing the
second right-hand-side term in (53) with the first.

To obtain explicit resuits, we shall consider the constitutive response for two specific
simple cases of straining: a normal strain that varies with position in its direction of
straining, and a shear strain that varies with position in the plane of shear. These
strain fields are clearly compatible with continuous, single-valued displacement fields.
For the normal strain case, we assume

2rx;
lN ’

(e ;1(x) = esin all other (e} (x) =0, (95)

where |¢| « 1 is a pure number. Then (53) gives for the 11-component of ensemble
average stress

. e i 1
oyn(x) = L11|1<€>11(x)_§<T>1111,11(m%

1

3 (96)

. P2 S . 2mx
= <L+ — KT nn(0) pesin
lN IN

Therefore, defining « x 100 as the error percentage of the constant effective modulus
term, that is, the percentage correction provided by the nonlocal term, we have

2n . .
—S i) =aly,. 97)

Iy
This means that once a desired error limit « is specified to which constitutive response
is captured purely by the effective modulus term, i.e. by a constitutive equation of the
form (94), then (97) gives the smallest wavelength /, of the ensemble average normal
strain variation for which this error limit is not exceeded. The implication is that /
provides the minimum representative volume element size for which a constitutive
model having form (94) will have error « for normal strain variations. Solving (97),
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- 2<f>1111,11(0) i — 2na 3C1(1“Cl)2(2—51)(l)1 +2D,) i 98
N oLy, Su(1+2¢,) 3k, + 4y - 098)
where D, D, are given by (77) and «,, u, by (75).
For the shear strain case we assume
. 27IX1
{e)15(x) = {e),,(x) = ¢sin ; ; all other {e);(x) = 0. (99)
S
Then (53) gives for the 12-component of ensemble average stress
~ ~ 3*{eyy»(x)
{6)2(x) = 2L12|z<e>12(x)‘<T>1212.11(0)"8)(—'3"
£ad!
. 470 . 2mx
={2L1212+%<T>1212,11(0)}851n / -, (100)
kY S
which leads to
2<T>1217 11(0) 'z Cl(l—cl)z(z—cl)D2 i
[ =n|———"—= = 101
s n. oLy, Sa(l4+2¢)p, (101)

In order to obtain explicit results for specific material types, recall that the isotropic
elastic moduli are related as
o 2(1+v)
T30t

(102)

where v 1s Poisson’s ratio. Large classes of important structural materials are well-
characterized by two values of Poisson’s ratio: glass, Al,O; (alumina), WC and
concrete all have v & 0.2, while aluminum, steels, brass, copper and titanium all have
v & 0.33. We will compute minimum RVE sizes using results (98) and (101) for matrix
materials having each of these values of v, for the extreme cases of the “reinforcing”
spheres being voids (k; = g, = 0) and being rigid particles (i, = y, = o). For each
of these cases, specification of v, the matrix value, which relates x,, and p,, via (102),
renders (98) and (101) independent of the other matrix elastic modulus. That is, for
the cases of a matrix reinforced by voids or by rigid particles, (98) and (101) show
that if the matrix Poisson’s ratio is specified, the minimum RVE length can be
determined explicitly, and is thus valid for all values of the other matrix elastic
modulus (g, say). To have intermediate results for each of these matrix types, we
will also analyze the specific systems of an aluminum matrix reinforced with alumina
particles, and an alumina matrix reinforced with aluminum particles. In these cases,
we need to know in addition to the Poisson’s ratio values that i, umisa/ Hatminum = 6.63.
All these results are displayed in Tables | and 2, being computed for the case x = 0.05,
that is, the tables report the minimum RVE size (normalized by reinforcement diam-
eter) for which an error of no more than 5% will accrue if ensemble average stress
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Table 1. Minimum RV E sizes from (98) for a random distribution of spherical “‘reinforce-
ments’”’, normalized by reinforcement diameter, for 5% error of L relating normal stress
to normal strain

Minimum RVE size, /y/(2a)

vy = 0.2 v, = 0.33
¢ Voids Rigid particles  ALO;/Al | Voids Rigid particles  Al/AL,O,
0.025 1.005 1.005 0.6699 1.018 0.8513 0.5825
0.05 1.345 1.345 0.8957 1.363 1.144 0.7818
0.1 1.710 1.710 1.134 1.729 1.462 0.9972
0.15 1.887 1.887 1.245 1.906 1.623 1.103
0.2 1.967 1.967 1.289 1.984 1.701 1.150
0.25 1.987 1.987 1.291 2.003 1.727 1.160
0.3 1.968 1.968 1.265 1.981 1.718 1.145
0.35 1.921 1.921 1.220 1.933 1.684 1.112
04 1.854 1.854 1.160 1.864 1.632 1.065

Table 2. Minimum RVE sizes from (101) for a random distribution of spherical
“reinforcements’’, normalized by reinforcement diameter, for 5% error of L relating
shear stress to shear strain

Minimum RVE size, //(2a)

vy, =02 v, = 0.33
3 Voids Rigid particles  AlL,O,/Al Voids Rigid particles  Al/ALO;
0.025 0.5502 0.5502 0.4063 0.4889 0.5547 0.4025
0.05 0.7367 0.7367 0.5438 0.6555 0.7415 0.5381
0.1 0.9363 0.9363 0.6900 0.8353 0.9397 0.6812
0.15 1.033 1.033 0.7592 0.9241 1.034 0.7479
0.2 1.077 1.077 0.7881 0.9654 1.075 0.7747
0.25 1.088 1.088 0.7919 0.9775 1.084 0.7768
0.3 1.078 1.078 0.7787 0.9699 1.071 0.7624
0.35 1.052 1.052 0.7535 0.9485 1.044 0.7363
04 1.016 1.016 0.7195 0.9170 1.006 0.7017

and strain are related by the constant effective modulus tensor L of (75). To obtain
(Iy/2a) or (I5/2a) for a different error limit, say o*, (98) and (101) show that one must
simply multiply the appropriate result in Table 1 or 2 by (0.05/a*)'2.

Several very interesting conclusions can be drawn from the results in Tables 1 and
2. For quite good accuracy (i.e. 5% error) of a constitutive model based solely on a
constant effective modulus tensor, the minimum RVE size is remarkably small:
approximately two reinforcement diameters for any reinforcement type and for all
reinforcement volume fractions shown. Even for high accuracy—a maximum error of
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1%-—the minimum RVE size for the most demanding case studied is only x4.5
reinforcement diameters. The tables show that for all systems considered, the mini-
mum RVE size increases with increasing reinforcement volume fraction until it attains
a maximum at about ¢; & 0.25, after which it decreases slightly with further increases
in ¢,. Comparing Table 1 to Table 2 shows that for equal accuracy of a constant
effective modulus constitutive model for normal and shearing response, the RVE
must be significantly larger in the case of normal straining. The tables both show that
for materials with v, = 0.2, the minimum RVE size is identical for both voids and
rigid particles. Finally, observe that the cases of void and rigid particle reinforcements
appear to be extreme tests of a constant-effective-modulus constitutive model, in that
the minimum RVE size required for the same accuracy of such a constitutive model
is always substantially larger in these cases as compared to the aluminum matrix/
alumina particles and alumina matrix/aluminum particles cases.

5. IMPLICATIONS FOR ENSEMBLE AVERAGE STRAIN ENERGY IN
RANDOM COMPOSITES

Here we relate our nonlocal constitutive equation explicitly to the ensemble average
strain energy, for random two-phase composites with isotropic distributions of phases.
We also show how the nonlocal constitutive equation is consistent with the stationary
energy principle.

Equations (2) and (11) yield

H(t) = J (o,e—aey) dx. (103)
Q
Application of the divergence theorem, noting that both ¢ and e, satisfy (1a), gives

H(t) = —I flu—uy)dx = —J‘ [(V:ou—(V-o,)u,]dx = J (e —o,e,) dx.
Q

Q Q
(104)
Thus, the strain energy & in the composite is
1 1 1
& =2L csedx :ELGO% dx+§3‘/'(r). (105)

Exactly similar manipulations, noting that (¢ also satisfies (1a), may be deployed
to demonstrate that the ensemble average strain energy is

(&= ;L {oe)dx = %L {oy{eydx = %L o,€,dx+ % {H(1)). (106)

Precisely the same structure applies to the variational approximation, based upon
seeking a stationary value for {J#(t*)>, amongst polarizations t* of the form (15).
Thus,
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(&)~ —J <er(x) |:L0 (er(x)+ J T(x—x){e>(x') dx']dx (107)

in general or, employing the asymptotic form (53) for {(a), which is applicable when
{e>(x) varies slowly,

0
&>~ —j <e><x)[L<e>(x)— LTy () a)feffx )] (108)
Integration by parts of the second term gives
q
&>~ ~j [<e>(x)L<e>( 43 5 0% >(")] (109)

The energy functional for the ensemble-averaged version of the problem defined by

(1) is
o((w)) = ;J j e>(X)[Ly 0(x—x") + T(x —x")]{e)(x") dx’ dx—f f(x)<{u)(x) dx.

(110)
This is stationary with respect to variations in {(u)(x) when
V-<{a>+f=0, (111)
with
{ay(x) = Lo<er(x)+ J T(x—x"){e>(x") dx". (112)
Q

Similarly, in the “slowly-varying” approximation (109),

5<e>(X) T, (0) 6’<e>( )

O(wy) = ~J [<e>(X)L< ex)+; ] j f(x){u)(x) dx.
Q

(113)

This is stationary with respect to variations in {u)(x) when (111) is satisfied, with
{a) related to <e> by (53). It is possible, too, in the spirit of “‘rational mechanics”,
to define stresses

500 = S0 () = 50— (114)
where
=3 [KedLie) +5<e> i <TD n(0)<eD 1. (115)
The Euler—Lagrange equation then takes the form
S = tijmm +1i = 0, (116)

which is no more than a re-write of (111).
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The medium thus behaves as though it possesses a local energy density function
W(<e),V<{e}). This form, however, was obtained by integration by parts. Whether
or not W({e)>, V{e)) can be identified in any precise sense with the mean local energy
density %(ae> is unknown. We have not accomplished any such identification for a
composite with random microstructure.

It is emphasized that the nonlocal constitutive relations developed in this work
have been derived under the assumption that the point under consideration is not
close to the boundary of the body. In principle, some similar analysis could be
performed, using the half-space Green’s function instead of that for the whole space,
to obtain the corresponding relation for points close to a smooth boundary. If this
were done, the boundary conditions on the mean fields would be exactly those imposed
on displacement or traction in the original problem. In the absence of such analysis,
any attempt to solve a problem for a finite body, using the constitutive relation (53)
everywhere, would require some additional boundary conditions. The best candidate
conditions would be those that arise naturally in the derivation of the principle that
®(<u}) should be stationary. One such set would be to prescribe displacement u and
its normal derivative du/on at the boundary ; another would be to prescribe 5,7, and
tmmt. Such relations would not yield accurate estimates for mean fields close to the
boundary, since these could only be resolved by a local analysis, but they would yield
a set of equations from which the mean field in the interior of the body could be
estimated. The question of the exact choice of boundary conditions for the solution
of boundary value problems is beyond the scope of this study.
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APPENDIX : DETERMINATION OF I'(0) AND ITS DERIVATIVES FOR
ISOTROPIC DISTRIBUTIONS OF PHASES

As noted in Section 3.3, in order to evaluate (37) explicitly, (38)—(40) with (34) show that
we will need I and its first and second derivatives with respect to &, evaluated at & = 0. These
are derived here.

The definition of I', (26), shows that we will first need information about ['y(£). From (6),

O*[Go(X¥)]
ax; Cx,

(Fo (i = — (A1)

Nk

Taking the Fourier transform of this gives, since Gy(x) and VG,(x) both —0 for |x| — oo,

[Fo(O)iss = EEIG (Dl inannr- (A.2)
Next, Fourier transforming (7) gives
~[Go (Nl idicin+ O = 0, (A.3)
from which
(Ga(®)1x = [L ' ()]s (A4)
having defined
(Lo (O]s = &iitijur- (A.5)
Thus, from (A.2) and (A.4)
[Co (s = Lo (Ol in.an: (A.6)
Observe from (A.5) and (A.6) that T',(¢) is homogeneous of degree zero in &, and that
L) =To(- 0. (A7)

Our earlier result (42) for ['(0) will now simplify in view of (45). Using the beginning of (42),
applying (45) and the homogeneity of T'y(£), and then introducing spherical coordinates (p, «, &)
in &-space (note that p and « have other meanings in the main body of the paper)
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1
L(0) = (T, » £)(0) = QJ Ty (©)ng) d¢ = J To(ENENAED dg

l 27 f*n - L ,
:—f J‘ l"()(ot,w)sinocdadu)J h(p)p” dp. (A.8)

3
8 0 0 0

Observing thus that the angular and radial parts of the integral are mutually independent as
grouped above, that the angular integral may be expressed as the surface integral over a sphere
of radius one in &-space, and that the radial integral h{p) may be rewritten as the total &-space
integral of i divided by the angular contribution of 4=, (A.8) becomes

I " - 1 e
F(O)=EL:IFo(f)ds[@uﬂh(é)d€]=z;h Iro(é)ds[ jh(é)e 5 dél:o

1 -
ro) = EJ T&ds=p |, (A.9)
[&=1

where we have used the fact that £(0) = 1 [e.g. from (22) and the fact that P,,(0) = 0].
To evaluate the first derivative of I', employ (26) with the commutativity property of
convolutions

ar_1 an(é)df— (z- o) ST b raE, (A0)
(‘fm 87'[3 Q Sm |§ él

where /" denotes the derivative of 2 with respect to its argument. Thus,

("r‘ 1 ] 2n fr E ~ ,
(er(ﬂ) s J Fo(é)mh(lél)dé —QL J[ (o, w)@smxdadojﬂ H{p)p* dp.

(A.11)

Again, we observe that the radial and angular parts of the integral separate as indicated, and
that the angular part may be represented as the surface integral over a unit sphere. Thus,

oI’ ! ~ s .
fT(O) = —gjj Lo(&)E, dSU h’(p)p‘dp} (A.12)
[€§1=1 0

(o™ 4

Now note from (A.5) and (A.6) that the surface integral in (A.12) can be written more explicitly
as
.

J Lo (&) iwin dS = J EIELOE] 1 i dS‘ : (A.13)
1§1=1 jel=1

N J(kD

Because the range of integration in (A.13) is symmetric (it is a unit sphere), and since every
term in the integrand will involve a product of an odd number of ¢ terms, the integral in (A.13)
is identically zero. Thus, (A.12) becomes

(0) =0 |. (A.14)

j':m

To evaluate the second derivative of T, employ (A.10)

or - C RgEy  EET A VA<
O=—1T, o h” - dé. A.15
e é() L (é){o B +.§':[1<|¢|) 2 ]} 4 (A.15)

Expressing this integral in spherical coordinates, separations into radial and angular portions
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can again be effected

621“ S 2 fr J}?(p)
—(0) =7 [y, w)sinadadw | ——p*d
aém 06,,( ) 87'[3 \L jo O( ) J‘O p P

1 n e émén - “1 /?(p) 2
— 'y (x, R (p)— ——|p~dp. (A.16
gl | e RGO

To evaluate the radial integral appearing in the first right-side term, we begin with an
integration by parts, noting that p/(p) — 0 for p — oc

© © = hip) J h(lé‘l)
h dp=—| Alp)dp=—| —Elp?dp=
L (p)pdp L (p)dp L e prdp=— - e d¢

o[ L[ ED e } NE
2n |:87r3 L Tk e **d& = (A.17)

This inverse Fourier transform is carried out by recalling that the Poisson equation in fun-
damental form and its solution (Green'’s function) are

VD(x) =8(x) = P(x) = ——, (A.18)
4mr
where r = |x|. Fourier transforming the first equation in (A.18) gives
- ~ 1
=L@ =1=0¢) = ——. (A.19)

&1

Comparing (A.18) and (A.19), the inverse Fourier transform of 1/|&}? is seen to be (1/4nr).
Using this and the Fourier convolution inverse transform, (A.17) becomes

rh’(p)pdp=~ Uh(lx XDy anix J
0 x=10

—EJ. AOXT) 4o — —544“@# dr = —2712J h(ryrdr. (A.20)
2], X 27T ,

From the last term in (A.16), we also need the integral of i (p)p*. To evaluate this, notice that
the three-dimensional Laplacian of 4(p) is

52[; — T2 [ 2"/
P Vih(p) = h"(p)+ ph (P (A.21)

Thus,
TP T IO P B
L [h (p)+ph(p)}p dp~f0 ac, oc, o1 digl ‘4nLaék66kd¢

. [‘j oh ’ic"dé} = 2m [ xexeh(XDeo = 0. (A22)

o0&, 0&,

having used the facts that /(o) = 0, (Vgh)(oo) =0and #(0) = 1.
Using (A.20) and (A.22), and reasoning similar to that used previously, (A.16) is seen to
reduce to

(‘) o

33 5()_EL IFo(fE)[3€mcn mn]dSUO h(r)rdr] : (A.23)




