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ABSTRACT

By comparing the First Law of thermodynamics in its shock wave form to its smooth wave form. and
applying standard continuum mechanical conservation laws and geometrical compatibility, we prove for
arbitrary media that a shock wave which propagates without rotating under steady-state conditions is
thermodynamically identical to a suitably-chosen steadily propagating smooth wave (and that this is not
so in general for nonsteady shocks). This legitimizes the derivation of restrictions on steady-state shock
waves by the analysis of suitably-chosen steady smooth waves in purely mechanical material models. Doing
so for a broad class of rate-independent elastic -plastic materials rigorously corroborates several recently-
published shock restrictions whose derivations involved some (now validated) heuristic arguments, and
substantially generalizes the material class for which these restrictions apply. Thus, e.g. within small-
displacement-gradient theory, stress jumps are ruled out across steadily propagating shock waves in quasi-
static deformations of any nonsoftening material satisfying plastic normality and positive-definiteness of
the elastic modulus tensor (removing the previous limitation of this result to materials that satisfy the
global maximum plastic work inequality and whose current yield Jocus always incorporates all prior yield
loci). We also confirm that steady-state shock waves in dynamic anti-plane strain or plane strain defor-
mations cannot exist except at elastic wave speeds for nonhardening materials in the same broad constitutive
class unless the yield surface contains a linear segment. Application of these results to steady-state dynamic
subsonic plane strain crack growth in elastic-ideally plastic Prandtl-Reuss-Mises material proves that this
problem’s solution must be shock-free. This implies that certain solutions containing strong discontinuity
surfaces. obtained in a recently-published numerical finite eiement study of this dynamic crack growth
problem, are not physically realizable. The conclusion is that either a more robust numerical procedure is
necessary which incorporates the thermodynamics-mandated shock restrictions derived here, or that steady-
state subsonic dynamic plane-strain elastic-plastic crack growth is not possible in this material model (and
potentially not in nature for materials exhibiting plastic normality, purely nonlinear yield surfaces and no
hardening). ¢ 1998 Published by Elsevier Science Ltd. All rights reserved.

Keywords: A. shock waves, A. dynamuc fracture, A thermomechanical processes, B. elastic-plastic
material. B. metallic materials.

1. INTRODUCTION

Because of the great complexity and indeterminacy of form associated with the
use of fully thermomechanical constitutive equations, most continuum mechanics
boundary value problems are formulated in terms of purely mechanical constitutive
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equations. While such sunplification is essential for tractability in most cases, one still
wishes not to exclude the modeling of phenomena that can actually occur in nature.
nor to introduce phenomena that are physically impossible. An important example
of this is shock waves. In actual materials, the large gradients in material velocity and
temperature associated with a shock wave produce marked effects of friction and
heat conduction, causing irreversible thermodynamic processes and hence entropy
production. In general in such large gradient regions, then, purely mechanical consti-
tutive equations are not sufficient to capture the physical phenomena. However, these
regions are usually observed to be very narrow; thus. an alternative to the use of u
fully thermomechanical constitutive formulation is to employ purely mechanical
constitutive equations, but permit the existence of a sharp (jump) discontinuity in the
appropriate feld variables to capture the physical phenomenon of a shock wave.
When this latter approach is adopted, it is obviously of crucial importance that a
careful determination be made of the conditions under which such jump dis-
continuities should be admitied, and of the types of discontinuities allowed, when
solutions are sought to boundary value problems involving purely mechanical consti-
tutive equations. This is crucially important since if only continuous (i.e., smooth)
solutions are sought to purely mechanical boundary-value problems, important physi-
cal phenomena may be missed. whereas if jump discontinuities are imappropriately
permitted in the unalysis of such problems, “solutions” may be found that lack
physical counterparts.

There have been several analyses addressing this issue of when moving jump
discontinuity surfaces should be permitted, and if so what types, in the solution ot
purely mechanical boundary-value problems, especially for elastic--plastic solids. Until
very recently, these analyses have employed a heuristic argument to require that the
Jjump forms of the standard continuum mechanical conservation laws and geometrical
compatibility should apply in incremental forms to the stress and deformation paths
through a shock wave, together with incremental forms of purely mechanical consti-
tutive restrictions. Thus. Drugan and Rice (1984) and Drugan (1986) showed that,
within a quasi-static and small-displacement-gradient framework, the skeletal consti-
tutive assumptions of the maximum plastic work inequality and positive-definiteness
of elastic strain energy density are sufficient to rule out propagating discontinuities of’
stress (not merely traction) and to restrict severely admissible types of propagating
strain and velocity discontinuities, for materials that either are nonhardening or that
harden in such a way that the current yield locus always incorporates all prior yield
loci, but are otherwise arbitrarily anisotropic. Drugan and Shen (1987) extended this
analysis to dynamic deformations of the same class of material response, and showed
in particular that for antu-plane strain and incompressible plane strain deformations
of nonhardening material, dynamically propagating surfaces of jump discontinuity in
stress and/or material velocity are not admissible except at elastic wave speeds or
unless the yicld surface contains a “flat” which then dictates the admissible propa-
gation speed ; Leighton ¢r «/. (1987) independently proved inadmissibility for the
specific case of incompressible plane strain of an isotropic nonhardening Prandtl-
Reuss—-Mises material. In a fascinating application, Nikolic and Rice (1988) analyzed
anti-plane shear dynamic crack propagation in an elastic-ideally plastic single crystal
(whose yield surface in stress space does contain flats), showing that near-tip solutions
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necessarily contain propagating jump discontinuities that satisfy Drugan and Shen’s
(1987) conditions. Further discontinuity work includes Drugan and Shen’s (1990)
generalization of the previous quasi-static and dynamic analyses to finite defor-
mations, Shen and Drugan’s (1990) treatment of the plane stress and compressible
plane strain cases. and Brannon and Drugan’s (1993) exploration of the influence of
non-classical constitutive features, such as non-normality of the plastic strain
increments to the yield surface, to admissibility of propagating jump discontinuities.

Brannon er al. (1995) initiated an effort to explore rigorously the validity of the
aforementioned heuristically-argued assumptions, upon which the above-reviewed
analyses are based. Brannon er a/. proved that during weak shock passage, a material
particle’s stress and deformation history is well-approximated by its history during
passage of a smooth wave with (i) purely mechanical constitutive response and (ii)
stress and deformation paths that satisfy incremental versions of the jump forms of
the conservation laws and geometrical compatibility. The first of these was
accomplished by generalizing a one-dimensional inviscid fluid analysis of Courant
and Friedrichs (1948) to general three-dimensional deformations of any magnitude
in arbitrary materials. The specific approach of Courant and Friedrichs that yields
results directly addressing the question at hand. and hence the one that Brannon er
al. (1995) generalized. is that in which one analyzes the thermodynamic differences
between a weak shock and a smooth wave. To do this, one first constructs the
Hugoniot function, which is a restatement of the First Law of thermodynamics in the
jump form valid across a shock : this function thus provides the set of all admissible
values of field variables on one side of a shock given a specific set of these variables
on the other side: the function is defined such that it is zero when the First Law is
satisfied. To compare a weak shock with 4 smooth wave, one calculates a Taylor
expansion of the Hugoniot function about the leading (or trailing) state of the smooth
wave, und uses the smooth forms of the conservation laws to evaluate it. The order
at which, and manner in which. the Taylor expansion diverges from zero then reveals
the thermodynamic differences between a shock and a smooth wave, which are due
to the additional entropy production that in general occurs in a shock as compared
to a smooth wave. This is because entropy production by a shock shows up as a
modification to the First Law of thermodynamics, as compared to that law’s form
for smooth waves in a purely mechanical model. Brannon ef al. (1995) showed that
for general deformations in arbitrary media, a smooth wave coincides with a shock
up until third order in material time rates of fundamental field variables, at which
degree they differ, in general. This conclusion concurs with that arrived at by Courant
and Friedrichs (1948) for the special one-dimensional inviscid fluid case they
considered. The implication of this result is that a general weak shock is well-approxi-
mated by a smooth wave in a purely mechanical constitutive model.

Brannon er al. (1995) also considered the case of steady-state shock propagation.
Here they addressed item (ii) above, proving that the incremental requirements of the
conservation laws and compatibility through a smooth wave rigorously reduce, when
steady-state wave propagation is considered. to precisely the incremental forms of the
shock (jump) conditions enforced on a heuristic basis by Drugan and Rice (1984),
Drugan and Shen (1987. 1990) and Leighton ¢r af. (1987). Also, for the case of
steady-state weak shocks, they proved the surprising result that the coefficients of the
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Hugoniot function’s Taylor expansion about the leading (or trailing) state of a steady
smooth wave vanish to all orders, as opposed to vanishing only through second-order
for general non-steady weak shocks. Although not proving that steady-state weak
shocks are thermodynamically identical to steady smooth waves, since non-zero
functions exist whose Taylor expansion coeflicients all vanish, this result was never-
theless very suggestive.

In the present work we follow up on this suggestion, and prove in Section 3 that a
steady-state but otherwise general shock wave in an arbitrary medium is ther-
modynamically identical to a steady-state smooth wave with the same start and end
states as the shock. The restriction to steady-state shocks permits removal of the
assumption that the shock is weak, since the analysis does not involve use of a Taylor
expansion.

This proof that a steady-state shock is thermodynamically identical to a steadily
propagating smooth wave means that restrictions imposed by constitutive require-
ments on steady-state shocks can be deduced by analyzing steadily propagating
smooth waves : the same purely mechanical constitutive equations assumed to govern
smooth waves must also, due to this thermodynamical equivalence, govern the
material behavior within the shock. Further restrictions are imposed by the steady-
state forms of the conservation laws and geometrical compatibility within the smooth
wave. In particular, by combining these with constitutive restrictions weaker than the
maximum plastic work inequality, we rigorously confirm in Section 4 the previous
shock restrictions deduced by Drugan and Rice (1984), Drugan and Shen (1987,
1990) and Leighton et al. (1987), while showing that these restrictions apply to a
broader class of materials than treated by these authors.

A special case of the group of situations in which steady-state elastic-plastic shock
waves can be ruled out, except those propagating at elastic wave speeds, is that of
plane strain elastic-ideally plastic materials satisfying plastic normality and whose
yield surfaces do not contain linear portions. The specific derivation of this result is
reviewed and extended in Section § via the present new approach. This conclusion
has great practical importance in the analysis of dynamic steady-state elastic--plastic
plane-strain crack growth: when such cracks propagate more slowly than the
material’s elastic wave speeds (as experiments appear to show they do), we conclude
that there can be no shock waves attending propagation of a crack tip under such
conditions. Yet the recent numerical finite element analysis of Varias and Shih (1994)
seems to show “‘shocks’ propagating with such a crack tip. However, their numerical
procedure does not enforce the requirements we prove here must be satisfied by the
path through a physically-acceptable shock. Our contention is that enforcement of
these thermodynamics-mandated shock requirements is analogous to the fact that
any physically correct elastic-plastic solution must involve only non-negative plastic
work rate, as also required by the underlying laws of thermodynamics. As we will
argue, the conclusion is that either there is a shock-free solution with features too
subtle for Varias and Shih’s (1994) numerical method to handle, or that no solution
exists to the sready-state governing equations for this case, implying that steady-state
plane-strain dynamic crack growth is not possible in this model (and potentially not
in nature for materials with purely nonlirear yield surfaces, plastic normality and no
hardening).
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2. CONSERVATION LAWS AND THEIR STEADY-STATE FORMS FOR
ARBITRARY MEDIA

In terms of a fixed reference configuration, the weak (integral) forms of con-
servation of mass, linear momentum, angular momentum and energy (First Law of
thermodynamics). together with the Second Law of thermodynamics are, respectively :
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Here, d/df denotes material time rate ; p, is reference mass density ; V', is an arbitrary
reference configuration subvolume having surface S, and unit outward normal n,; v
is the material velocity vector; t, is the First Piola~Kirchhoff (nominal) traction
vector ; bis the body force vector per unit reference mass ; x is the current configuration
position vector; x denotes vector cross product ; * denotes vector inner product ; u is
internal energy, r is heat source and # is entropy. all per unit reference mass; Q is the
nominal heat flux vector, and 6 is the absolute temperature.

2.1, Jump forms of the conservaiion laws

When a shock wave is sufficiently narrow physically to be idealized as a jump
discontinuity surface, the conservation laws assume well-known jump forms. Denote
the reference configuration image of this discontinuity surface by X, with speed ¢, in
the propagation direction of unit normal vector N, The jump of any field variable
is denoted by double brackets as [y/] = ¢ " —y ", where y* and /™ are the limiting
values of y just ahead of and just behind the shock, respectively. An overbar denotes
the average of the (+) and (—) side limiting values: ¥ = (y* + ~)/2. Application
of the weak forms of the conservation laws (1) to a “pillbox”-shaped element con-
taining this surface, in the limit as the element collapses onto the surface results in
the jump conditions (see. e.g., Chadwick. 1976), respectively (conservation of angular
momentum does not provide an additional restriction to (3)):
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Here, 6, is the First Piola--Kirchhoff (nominal) stress tensor (t, = n,*a,) ;: F = éx/éX
is the deformation gradient tensor, where x(X, 7) is the motion: a superscript T
denotes tensor transpose: and : denotes tensor inner product. so that in terms of
index notation with the summation convention, A:B = 4,8,

2.2, Local (smooth) forms of the conservation laws

In reference configuration regions where all field variables have continuous first
derivatives with respect to both position and time, it is well-known that the integral
forms (1) of the conservation laws reduce to the following local forms. respectively :

o, =0 (6)

Vo o, = py(v—b) (7

F'O'() :=(F'G())7. (8)

polt = 6 F+ P =V Q 9)
r 1 Q
SRR v U .

A 0+/)0‘0 (0>>0 (]0)

Here and in the following, a superposed dot denotes material time rate, and V,-
denotes divergence with respect to reference configuration coordinates. To these local
forms (6)-(10} we append the material time rate of the deformation gradient tensor
definition., which can be regarded as the compatibility condition :

F == xV, =vV,. (11)

Incidentally, although we have recorded the Second Law of thermodynamics here for
completeness, we shall not explicitly use it in our analysis of general media, and it will
be supplanted by the subsuming but stronger maximum plastic work inequality in
our analysis of elastic- plastic materials.

2.3, Steady-state local forms of the conservation laws

The local forms of the conservation laws simplify when they are applied to the
fields associated with a smooth wave that propagates under steady-state conditions
with respect to an observer moving with the wave. Specifically, following Brannon et
al. (1995), we will analyze a smooth wave whose reference configuration image



Thermodynamic equivalence of steady-state shocks and smooth waves 319

propagates without rotating under steady-state conditions with constant speed ¢, in
the direction of its unit normal N. Under these conditions, the material time rate of
any field quantity y within the wave is simply

l//: "(“,I/IV')’N, (12)
and we have also required

N=0, ¢ =0. (13)
Since our goal is to explore whether a smooth wave can emulate a shock, we further
restrict consideration to smooth waves having the feature that field quantities may

vary through the wave (i.e., in the N-direction). but nor parallel to the wave. The
reference configuration del operator then simplifies to

Vo=No

0 (14)

where v measures distance in the N direction.
Assuming that no body forces act, it is straightforward to show (see Brannon er
al., 1995) that (12) and (14) together give:
, b, ,
Voo, = - —6,"N; (15)

Co

that (12) and (14) reduce compatibility (11) to the useful forms:

. |
PN - Ly (16)

Cy
= (F-N)N: (17
and that (15) and (16) reduce lincar momentum conservation (7) to
N-6, = pocif-N. (18)
It will also prove useful to note that taking the material time rate of (17) and (18),
applying (6) and (13). gives respectively
F=(F - N)N. (19)

N-&, = pyciF-N. (20)

3. COMPARISON OF A SHOCK WITH A SMOOTH WAVE IN ARBITRARY
MEDIA

3.1 Assessment of weak shocks vs smooth waves via Taylor expansion of the Hugoniot
function

Here we summarize Brannon er al’s (1995) generalization of the Courant and
Friedrichs (1948) approach to comparison of a shock with a smooth wave. While
Courant and Friedrich’s analysis addressed only weak one-dimensional shocks in
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inviscid fluids, Brannon ef al. showed that the basic idea of their analysis could be
extended to general three-dimensional deformations of arbitrary media. For these
general conditions, the Hugoniot function # is defined as

H(F.00,u.Q) =(u—u;)~ ] |0'|)+0'01) (F— Fl)*’*"’(g*Ql) (2n

bp Polo
Regarding {F, a,. u, Q} as the set of all states on one side of a shock front associated
with a given STATE 1 {F,, a,,, ,, Q,} on the other side, the jump (shock) form of
the conservation of energy (4) is then expressed by the condition

H = 0. (22)

To explore how a smooth wave differs from a shock, Courant and Friedrichs’ idea
was that one could evaluate the Hugoniot function for a smooth wave by a Taylor
expansion, and then determine the degree to which it differs from the shock value
(22). Brannon et al. (1995) generalized this by parameterizing the variables in the
Hugoniot function as functions of time, and then performing a Taylor expansion of
H about STATE 1 in a smooth wave:

. - 1
) = Hy+ 1 =00 5 B = 0)7 4 5 F=0) (23)

where the coefficients H,, H,. etc. denote the values of H and its material time
derivatives at STATE 1. Thus (23) applies at a fixed material point, with ¢, cor-
responding to the time when one side (STATE 1) of the wave has just reached that
material point, and 1 is the time when the other side of the wave reaches the point.
Such an expansion is sensible when one is exploring whether a smooth wave can
emulate a weuk shock, in which case one anticipates that |-, « 1 (when suitably
nondimensionalized).

Assuming that the heat source is zero and the heat flux is constant (Courant and
Friedrichs assumed they are both zero), Brannon et al. applied the smooth form of
the First Law, (9), to show that the coeflicients in the Taylor expansion have the
following values for a general non-steady smooth wave:

v =H, =H, =0, H = ""’)’"(0'(711 :Fl—o'm x) (24)

Thus, they showed that a weak shock is thermodynamically equivalent to a smooth
wave until third order, but these do differ at third order since H, # 0 in general.
Brannon et al. (1995) also explored this comparison in the special case of steady-
state shock and smooth wave propagation. In this case, the simplified restrictions due
to momentum conservation and compatibility. (16)-(18), apply. As shown by Bran-
non et al., the forms (19), (20) of these restrictions immediately require that the last
of (24) becomes H, = 0, and furthermore that all higher-order coefficients in the
Taylor expansion (23) vanish also n this steady-state case. This suggests at least that
the smooth wave approximation improves substantially for steady-state weak shocks,
and carries the tantalizing implication that a smooth wave may be thermodynamically
identical to a shock in this steady-state case. [That this is merely an implication and
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not yet a proof is due to the fact that smooth functions exist which are zero at a
point and whose Taylor expansion coefficients all vanish at that point, but which
nevertheless become nonzero away from that point; a simple example is e =" """,
where e is the natural logarithm base.]

3.2, Direct demonstration that a suitable smooth wave exactly models a steadily
propagating shock

Herce we provide a new, direct proof that the conclusion hinted at by Brannon ef
al.’s (1995) analysis is indeed true : a shock propagating under steady-state conditions
is thermodynamically identical to a suitably-constructed smooth wave. Furthermore,
since the proof is direct in the sense of not involving use of the Taylor expansion (23).
it is valid for shocks of arbitrary strength.

As reviewed in Section 3.1, Brannon er al. (1995) demonstrated that for general
three-dimensional deformations of arbitrary materials, there is a thermodynamic
difference between a shock and a smooth wave: this involves additional entropy
production in the shock, and it shows up as a modification to the First Law of
thermodynamics, so that the shock form of this law differs from the smooth wave
form. Brannon e¢f al. compared this difference by expressing the First Law for a
shock as the requirement that the Hugoniot function vanish, and then quantified the
difference between this and the smooth wave form by showing that if the Hugoniot
function is expanded in a Taylor series for a smooth wave, its third-order coeflicient
is non-vanishing in general. However. their demonstration that all the Taylor series
coefficients vanish in the case of steady-state propagation of smooth waves and shocks
strongly suggests that under such conditions, the thermodynamic differences between
shocks and smooth waves vanish, which would mean that the smooth wave form and
the shock form of the First Law should reduce to the same condition in such steady-
state situations.

We will show this now by directly integrating the smooth wave form of the First
Law across a steady-state smooth wave. and verifying that the resulting condition is
identical to the shock (jump) form of the First Law. From (9). the smooth form of
the First Law is. assuming as before zero heat source and constant heat flux

pott = a1 F. (25)

We express integration of this at a fixed material point just from the time of arrival
(1*) to the time of departure (") of a smooth wave as

~

! 1 o
[ nde = - ' al:Fdr (26)
; o l,

v

Note that for a general nonsteady wave. (260) is not integrable in general ; i.e.. more
specific information is needed. and the result will differ for different waves. However.
under the special conditions detailed in Section 2.3, namely steady-state propagation
of & smooth wave with a non-rotating reference configuration image and field quan-
tities that vary through the wave but not along it (and no body forces acting), (26)
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can be integrated directly for finite deformations and arbitrary materials : applying
the compatibility requirement (17) under such steady-state conditions shows that

6} F =(N-g,) (F-N). @27

Also recall we showed linear momentum conservation under these conditions to
reduce to (18). the substitution of which for F-N into (27) gives

L. 1
al:F= o (Nooy)(N-5) 28)
PoCoy

Recalling from (13) that N = 0, we temporarily define for convenience the vector
T = N0, Then using this and (28). (26) becomes

' [ .
[ udt = 7,J T-Tds. (29)

PoCo Ji

v

This can now be integrated directly, giving

[ 1 .
u —u' = [T T =T T = — (T 4+T ) (T =T ). (30)
20565 2pscp

Next, integrating linear momentum conservation (18) and compatibility (17) at a
fixed material point just during passage of the smooth wave, applying (6) and (13)
gives, respectively :

(T =T ) = pycg(F" —=F )N, (31)
(F' —F ) =[(F" —F)-N]N. (32)

Application of first (31) and then (32) to (30) leads to the final result :

1 1 "
u'—u = _--N+o; +6,)(F' —F )'N=-—(6) +6,) :(F —F ). (33)
o 2P(|
Observe that this 1s identical to the shock (jump) form (4) when, as assumed here,
heat flux is constant :

. |
Ll(]l = () )’6’6 M ‘IFU (34)

Thus we have shown directly that when the smooth form of the First Law of
thermodynamics is integrated at a fixed material point just during passage of a steady-
state non-rotating smooth wave of the type that emulates a shock wave (i.e., having
field quantities that vary through the wave but not along it, since for a shock any
change in field quantities along the shock is negligible compared to their change
across it), the result is exactly the shock form of the First Law. That is, we have
proven that the thermodynamic difference that Brannon er al. (1995) showed exists
between a general non-steady shock and a smooth wave vanishes completely for
steady-state shock propagation, when the smooth wave is chosen as described.

We thus conclude the following from these new results and those of Brannon ez «/.
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(1995) : for general nonsteady shocks, when such a shock is weak (i.e., involves only
small jumps in field variables), it can be very accurately approximated by a suitably-
chosen smooth wave, since Brannon er /. proved that these differ thermodynamically
only at third order in the Hugoniot function Taylor expansion (23). However, for
steady-state shock propagation, we have just proved that a suitably-chosen smooth
wave 1s a thermodynamically exact representation of the shock, for shocks of arbitrary
strength (i.e., not limited to weak shocks). Our contention is thus that restrictions on
the existence and allowable 1ypes of steady-state shocks can be derived exactly by
analyzing a suitably-chosen smooth wave, by using the steady-state forms of the gov-
erning equations reviewed in Section 2.3 accompanied by, for specific material types.
purely mechanical constitutive restrictions. Furthermore, such an approach provides
approximate restrictions on weak, slightly nonsteady shocks. These conclusions vali-
date the previous analyses of shock restrictions reviewed in Section I, and lead to the
new, stronger restrictions derived below.

4. STRENGTHENED RESTRICTIONS ON STEADY ELASTIC-PLASTIC
SHOCKS

The fact proved in Section 3.2. that a shock wave which propagates under steady-
state, non-rotating conditions is thermodynamically identical to a suitably-chosen
smooth wave, rigorously legitimizes the derivation of restrictions on such a shock by
analysis of an appropriate smooth wave within a purely mechanical constitutive
model. This will now be performed for steady-state shocks in elastic plastic media
satisfying only skeletal constitutive restrictions. Drugan and Rice (1984) and Drugan
and Shen (1987, 1990) have previously carried out such analyses for quasi-static and
dynamic shocks, by making assumptions tantamount to those proved rigorously in
Section 3.2 here: we show now that the explicit recognition of this steady
shock smooth wave equivalence leads to a strengthening of the restrictions derived in
these references, probably to the strongest forms possible.

For simplicity and clarity, we will perform the analyses in this section within a
small-displacement-gradient framework. so that the results obtained will explicitly
generalize those derived in Drugan and Rice (1984) and Drugan and Shen (1987);
the finite deformation versions of thesc results are obtained by a fairly straightforward
applicittion of the approach outlined here to the formulation laid out in Drugan and
Shen (1990). using the results of the present Section 3.2.

4.1, Steady-siate smooth forms of conscrvarion laws within a small-displacement-
gradient formulation

For the remainder of the paper, we will employ a small-displacement-gradient
framework. Within this, the smooth forms of the needed conservation laws and
compatibility are, when no body forces act :

p =0 (35)
Vg = pv (36)
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6=¢a" 37N
e = L [uV+(uV)T], (38)

where ¢ is the stress tensor, ¢ the infinitesimal strain tensor, u the displacement vector
and p is mass density.

The conditions (12)-(14) describing the steady-state, constant-speed propagation
of a smooth, non-rotating wave with the shock-emulating property that quantities
vary through but not along it become :

= —cyV-n (39)
n=0 ¢=0 (40)
Vend 41
=m (40

where the wave propagates with speed ¢ in the direction of its unit normal vector n
and v measures distance in the n direction. Combining (39) and (41) shows

. dy
= — (- 2
W ¢ a 42)
and application of this and (41) produces
S .
a—ndv— (}na. 43)

Thus, linear momentum conservation (36) reduces via (43) to
n 6= —pcv, (44)
which in incremental form at a fixed material point is
[n-do = —pcav. | (45)

Next, choosing ¢y = u in (42) produces

. du
y=i= — oSt (46)

taking the increment of this at a fixed material point gives, using (40)

dv = — d@’) 47)

Using (41), (38) 1s

[dudu 43
| N (48)
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the increment of which at a fixed material point becomes, using (40) and (47) :

de = — ;;[(dv)n+-n(dv)]. (49)

It is interesting to observe that (45) and (49) are identical to the forms assumed, on
the basis of heuristic arguments, to apply to a material particle during shock passage
by Drugan and Shen (1987) and Leighton et af. (1987), and in the quasi-static case
with the right-hand side of (45) cqual to zero by Drugan and Rice (1984). We have
shown here that these arise rigorously for a material particle during steady-state
smooth wave passage. and that a suitably chosen smooth wave rigorously represents
a steady-state shock.

4.2, Skeletal elastic- plastic constitutive assumptions

Here we summarize the skeletal set of constitutive assumptions employed by Dru-
gan and Rice (1984) and Drugan and Shen (1987) to represent a very broad class of
rate-independent elastic-plastic materials of practical significance for which never-
theless strong shock restrictions can be deduced. When these are employed in the
following section to derive shock restrictions by analyzing a smooth wave. we shall
be able to relax some of the constitutive restrictions required by these authors, and
thus obtain results of far greater (probably the greatest) generality.

Total strain increments are assumed to decompose additively into elastic and plastic
parts, with the elastic part being linearly related to an increment in the stress tensor
by the fourth-rank, positive-definite elastic compliance tensor M, whose components
possess the usual symmetries M, = M, = M,

de = de +de” = M :de +de”. (50)
Plastic deformation is constrained to satisty the maximum plastic work inequality :
(6—06"):de” =0, (51

where ¢ and d¢” are the actual current stress and plastic strain increment, and 6" is
any other stress state lying on or within the current yield surface.

4.3.  Restrictions on steadily propagating, non-rotating shock waves

We now employ the result proven in Section 3.2 that a shock propagating under
steady-state, non-rotating conditions is thermodynamically identical to a steadily
propagating, non-rotating smooth wave having the same start and end states as the
shock und with the feature that field quantities may in general vary through the wave
but not along it. Thus we may derive restrictions on such steady shock waves by
analyzing a smooth wave of the type just described, their thermodynamical equiv-
alence rigorously justifying use of a purely mechanical constitutive model in the
smooth wave analysis. This means that to determine whether a field quantity can
jump across a shock. we must analyze whether it can accumulate a change across a
smooth wave. The minimum necessary condition for such an accumulation is that if
one monitors a fixed material point during passage of a smooth wave, the field
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quantity must experience an incremental change at some time increment during wave
passage. The weakest way to enforce the maximum plastic work inequality (i.e., the
way leading to the greatest generality of results) is thus to choose ¢” to be the stress
state at a fixed material point during smooth wave passage at the instant before the
current stress o is attained ; with this choice, (5!) becomes

do:de” =0, (52)

which restricts the plastic response only by requiring it to be non-softening and
consistent with normality of plastic strain increments to the yield surface ; beyond this.
any type of material hardening, including nonhardening (ideally plastic) behavior, is
permitted.

The analysis of the restrictions imposed by (52) will be facilitated by eliminating
de” from it via (50) :

do:(de—-M:deg) = 0. (53)

The implications of this become more clear when the steady-state compatibility
condition (49) is used to substitute for de, so that (53) becomes
[
— - —de:[(dv)n+n(dv)] —de:M:de = 0. (54)

2¢

By making use of angular momentum conservation (37), this reduces to
I
-~ n+de-dv--de:M:de > 0, (55)
¢

where the equality applies for nonhardening material.

4.3.1.  Restrictions on steady-stute shock waves in quasi-static deformations. Here
we analyze which field quantities can accumulate changes during steady-state smooth
witve passage in quasi-static deformations, and thereby determine restrictions on
steady-state quasi-static shock waves. As noted earlier, for quasi-static deformations,
material inertia is negligible, and thus the steady-state form of linear momentum
conservation (45) reduces to

n-de =0. (56)
Substitution of this into (55) results in the requirement

—de:M:de = 0. (57)

Since M is positive—definite, this immediately shows that
do =0; (58)
that is, no stress tensor changes can accumulate during the passage of a steady-state
smooth wave. Application of this result to (50) shows that no elastic strain changes
can accumulate either. Finally, steady-state compatibility (49) shows that no com-
ponents of strain lying in the plane parallel to the smooth wave at any point can

accumulate changes : that is, the only possible components of strain that can change
across the wave are n-¢” = g -n. Thus. we conclude that ¢ and & cannot jump across
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a steady-state shock wave in quasi-static deformations, and at most only the n-g
components of strain can. These conclusions are identical to those derived by Drugan
and Rice (1984), but we have here shown them to apply to all elastic--plastic materials
that satisfy (50) and (52), which is a much broader constitutive class than that to
which Drugan and Rice’s analysis applies. as discussed further in Section 4.4.

4.3.2.  Restrictions on steadily propagating shock waves in dvanamic deformations.
For dynamic deformations, the full form (45) of linear momentum conservation
applies ; using this to substitute for dv, (55) becomes:

(n-de) (n-do)—pcide:pdo > 0.] (59)

This inequality restricts, but does not rule out, stress changes across a smooth wave.

In addition to (59), in order that de # 0 during any part of a smooth wave passage
for wave speeds not equal to an elastic wave speed, the stress state must remain at
yield. This is proved by contradiction : Suppose that de takes (or maintains) the stress
state below yield. Then, the corresponding strain increment must be purely clastic, so
that from (50)

de=de =M:de = do=C:de. (60)

where C = M ' is the elastic modulus tensor. Taking the dot product of (60) with n
gives

n-de =n-C:deg, (61)

which may be rewritten using the steady-state forms of momentum conservation (45)
and compatibility (49). together with the symmetries of C as

(n-Cn—pc’ly-dv =0, (62)
where [ is the identity tensor. This permits dv 0 only when
det(n-C-n-—pc’l) =0, (63)

the three solutions for ¢ of this are the elastic wave speeds, and (49) and (60) show
that dv # 0 is needed for de # 0. Thus. we conclude that de must be such that e
remains at yield for de # 0 during passage of a smooth wave whose propagation
speed differs from an clastic wave speed.

The results of this section. together with those of Section 3.2, show that in order
for a steady-state shock wave whose propagation speed ¢ is not an elastic wave
speed [i.e.., does not satisfy (63)] to exhibit a nonzero stress jump during a dynamic
deformation, a steady-state smooth wave must exist that exhibits, at least during some
portion of the wave, a nonzero stress increment which bosh (i) satisfies (59) und (i)
corresponds to ¢ remaining at yield. These results are in accord with those derived by
Drugan and Shen (1987), but we have here shown them to apply to all elastic-plastic
materials that satisfy (50) and (52), which is a much broader constitutive class than
that analyzed by Drugan and Shen, as discussed further in Section 4.4.

For the case of nonhardening materials, stronger restrictions emerge. Non-
hardening response. together with the just-proved requirement that the stress state



328 W.J. DRUGAN

must remain at yield, corresponds to an equality in (52), which carries through the
above analysis so that (59) becomes

(n+de)+(n*de)—pc*de:M:de = 0. (64)

This restriction allows one immediately to rule out the possibility of steady-state
shock waves in broad classes of dynamic deformations. For example, for anti-plane
strain deformations having the only nonzero stress components be ¢,,(x,, X,) = 75,
(X1, X;3) = 04,. and choosing X, to lie in the n-direction, (64) reduces to

(d”n): _49('2[M13|3(d011)2 +2M,5,,doy s dosys + M:zn(d(’z;]:] =0. (63)

Regarding this as a quadratic equation for do,;, one finds

“l . 1 1:2 )
df’zz = 7‘4”;; {Iwmzai |:<MT}ZP? + M55 (49('2 —M13|3>:I }d(’n- (66)

This requires o,; to vary linear{y with a,; across any potential steady-state shock wave,
but as noted above these must also satisty yield through the shock. Thus, unless the
yield condition contains a linear segment with which (66) coincides, no stress jump
can accumulate unless it propagates at an elastic wave speed. This means. via (45)
and (49), that no strain nor velocity jumps can accumulate either. This corroborates
the conclusion reached by Drugan and Shen (1987), valid for arbitrary anisotropy,
and generalizes it to nonhardening materials satisfying only positive-definiteness of
M and plastic normality (i.e. removing Drugan and Shen’s restriction to materials
with convex yield surfaces). One can similarly employ (64) within the present approach
to rule out steady-state shock waves in dynamic incompressible plane strain defor-
mations of arbitrarily anisotropic materials, unless the yield surface contains a linear
segment or the shock propagates at an elastic wave speed, by following a similar
procedure to Drugan and Shen’s for this case, thus again confirming and generalizing
their finding. In Section 5 we will employ the present approach explicitly to analyze
steady-state shock waves in dynamic plane strain deformations of isotropic Prandtl -
Reuss--Mises material.

4.4.  Discussion: comparison with previous shock analyses

The results of Section 4.3 rigorously confirm, for the case of steady-state non-
rotating shock wave propagation, the shock restrictions derived previously by Drugan
and Rice (1984) and Drugan and Shen (1987), while also proving that they apply to
a far broader constitutive class than previously shown. Here, we have shown that they
apply to all elastic—plastic materials that satisfy (50). (52) and positive--definiteness of
M, while these previous studies were further restricted to materials satisfying (51) and
which. if they harden, do so such that the current vield locus always contains all prior
vield loci. The reason for these additional constitutive restrictions was that these
authors arrived by heuristic argument at the requirements that the stress and defor-
mation paths experienced by a material particle during shock passage had to satisfy
(45). (49) and (50), and they applied these to integrate the maximum plastic work
inequality (51) at a fixed material point just during shock passage :
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Je (6—06"):de" =0, (67)

o

where except for nonhardening materials they made the choice 6° = ¢ *, the (constant)
stress state at the material point just before shock arrival. With this choice of 6°, the
restrictions produced by (67) are only valid provided ¢* remains on or within the
yield surface during shock passage, which can be guaranteed in general only by
restricting the material class to those whose current yield locus always contains all
prior vield loci. This is not the optimal choice for 6°; i.e., it does not lead to restrictions
for the broadest possible material class.

By contrast, our proof here (Section 3.2) that a steady-state shock can be exactly
represented by a steady-state smooth wave facilitates examining incremental accumu-
lation of field variable changes during passage of any infinitesimal portion of the
smooth wave, as a necessary condition for a jump in such a field variable across a
shock. This permits us to choose 6° to be different for each time increment at a fixed
material point during smooth wave passage [which we have done by choosing it to
be the stress state at the time increment dr before the (arbitrary) current state o],
which is the best possible way to choose ¢" and hence leads to the present results
which apply to the widest possible constitutive class, delineated by the assumptions
(50), (52) and positive-definiteness of M.

5. APPLICATION: AN OPEN QUESTION IN DYNAMIC FRACTURE
MECHANICS

An important set of applications for the shock wave restrictions derived previously
by Drugan and Rice (1984). Drugan and Shen (1987, 1990) and Leighton ¢r «/. (1987),
which we have rigorously substantiated and generalized here, has been to determine
whether shock surfaces can accompany a growing crack in elastic—plastic solids. For
example, the demonstrations by Drugan and Rice (1984) and Drugan and Shen (1990)
in the “small strain’” and finite strain cases, respectively, that no moving surfaces
of stress discontinuity or of normal velocity discontinuity can exist in quasi-static
deformations of elastic plastic materials satisfying the maximum plastic work
inequality enabled Rice and Nikolic (1985), Rice (1987). Ponte Castaneda (1987),
Drugan and Chen (1989) and Reid and Drugan (1993), among others. to enforce
stress and normal velocity continuity in their analyses of near-tip stress and defor-
mation fields for quasi-statically growing cracks for a variety of material types and,
in the last reference cited. within a finite deformation formulation. Dynamic elastic-
plastic crack growth solutions have been far more problematic, as will be discussed
further below, but one very interesting solution 1s that of Nikolic and Rice (1988),
who analyzed near-tip stress and deformation fields for dynamic elastic- ideally plastic
anti-plane shear crack growth in ductile single crystals. These authors applied the
dynamic shock restrictions derived by Drugan and Shen (1987), which demand that
for subsonic crack growth, a shock may accompany the growing crack tip only if the
stress (ransition across the shock lies on a linear portion of the yield surface (the yield
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surface for the single crystals modeled does have linear portions). Nikolic and Rice
were able to show that a dynamically growing crack in such ductile single crystals
must be accompanied by an (antisymmetrical) pair of shock surfaces emanating from
the crack tip, whose orientations depend on the crack propagation speed.

For either anti-plane shear or incompressible plane strain dynamic subsonic crack
growth, in nonhardening materials that satisfy the maximum plastic work inequality
and whose yield surfaces do not contain linear portions, the analysis of Drugan and
Shen (1987) [and, for the special case of incompressible plane strain deformations of
isotropic Prandtl-Reuss-Mises material, the independent analysis of Leighton er al.
(1987)] shows that « shock wave cannot exist at a dynamically propagating crack tip.
In the analyses just cited, some of the conditions employed to derive these conclusions
were based on heuristic arguments, as we have noted explicitly above. However, in
the present work for the case of steady-state nonrotating shock propagation, we have
replaced those heuristic arguments with rigorous analysis.

In this section, we first specialize the rigorous analysis of Section 4.3.2 to the case
of dynamic plane strain deformations of nonhardening, incompressible elastic-plastic
materials whose yield surfaces do not contain linear portions. This analysis confirms
the conclusions of Drugan and Shen (1987) and Leighton er a/. (1987) that no shocks
with speeds different from an elastic wave speed can exist under such conditions.
Leighton er al. (1987) employed this conclusion to derive a shock-free asymptotic
field near a dynamically growing crack in incompressible plane strain elastic-ideally
plastic material. That paper also provides an excellent review of previous asymptotic
analytical studies of dynamic elastic-plastic crack growth. We next confirm the ideas
of Shen and Drugan (1990) to show the same must be truc for compressible plane
strain dynamic deformations. Finally, we discuss the implications of this on a recently-
published numerical finite element analysis of dynamic plane strain elastic- ideally
plastic crack growth.

S.1. Restrictions on steady-state shock waves in dynamic plane strain deformations of
nonhardening Prandtl-Reuss-Mises material

Here we specialize the analysis of Section 4.3.2 to plane strain deformations of
nonhardening isotropic Prandtl--Reuss-Mises material, for simplicity of illustration
and because the specific dvnamic crack growth problem to be discussed concerns this
material. Thus the yield condition and fow rule take the forms

]
o) = ;s:skkz =0 (68)
1+v v
de = - Fa do —- Eltr(da’)—f—d/\s. (69)

where s is the deviatoric stress tensor, & s the (constant) yield stress in pure shear, £
1s Young’s modulus. v is Poisson’s ratio. and dA > 0 is constitutively unspecified. We
introduce a Cartesian coordinate system such that for the plane strain deformations
under consideration, x; is perpendicular to the plane of deformation, and x, is parallel
to the smooth wave normal n at the material point under consideration. Thus.
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6 = a{x,, X»), and a5 = 6., = 0. For this choice of coordinate system and isotropic
materials, (64) reduces to

do, do,,— 5’27 [(1+v) da, do, —v(daw)’] = 0, (70)

where here and henceforth Latin subscripts have range 1, 2, 3 and the Einstein
summation convention is employed.

The condition of plastic incompressibility is built into (69). taking the trace of
which thus gives

1 -—2v
dey, = '"14;"(1(7,\,‘.. (71)

Using (49) with (45) to substitute for dg,, (71) becomes:

i )
do,, = pc? m-day, (72)

The plane strain condition requires, using (69):

1

dey, = £

[doy —v(deo,, +do.:)] +dAsy; = 0. (73)
For fully incompressible material response (v = 1;2) or when plastic strain increments
are very much larger than elastic ones. (73) reduces to the well-known condition
Si3 = 0 le

733 :'i'(ﬂ'u t052). (74a)
When v # 1/2 and plastic strain increments do not overwhelm elastic ones, and
recalling that we have shown above that a subsonic shock cannot exist if the strain
increments are purely elastic, the only other possibility is that s3; # 0, in which case
(73) can be solved for dA :

d(T),_; e \'(d(rll +d0—23)

Ly 33

dA = - (74b)

Case 1. Let us first examine the casc of fully incompressible material (v = 1/2).
Then (72) and (74a) give, using the first to simplify the second :

|
do,, =0. do,. = ;—)d(;z:. (75)

Using these, (70) specializes to

= ’**'E*(d(fzz):» (76)

3pct | 3pe?
1=

which again applying (75) may be rewritten as
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73 2
doy, = + (S T, (77)
E— 3p

This shows that ¢, must vary linearly with (¢, —0,,) across a smooth wave. but in
addition yield (68) in this case requires these to be related as, using (74a) :

[ ""\2 2 2
<”‘ T bot, =k (78)
2y

Thus (77), (78) and (75) show that no stress changes can occur in this case across a
steadily propagating smooth wave that is not propagating at an elastic wave speed.
Applying this result to (45) shows that no components of material velocity can change
across such a steadily propagating smooth wave, which leads to the conclusion from
(49) that no components of strain can change either. Hence, by our earlier analysis,
no stress, strain or velocity jumps can occur across a steadily propagating shock. This
rigorously confirms the conclusion reached independently by Drugan and Shen (1987)
and Leighton e al. (1987). who employed the heuristic arguments mentioned earlier.

Case 2. Next we analyze the elastically compressible case (v # 1/2) when plastic
strain increments are very much larger than elastic ones. A specific analysis of this
case has not previously been published, to my knowledge. Now, (72) replaces the first
of (75), but (74a) still applies. so that (72) reduces to

doy) = = doy, (79)

where K = E/{3(1—2v)] is the bulk modulus. Employing (79) and (74a), (70) reduces
to

' , 172
don = e pE A 50
UK pHE— 4K =2(1+v)pc]

Finally. using first (79) and then (80) results in

5

P K g (K pe) =20 4] )
1 = T

[)(': L[)( [(5—4V)K—2(1+v)pc® ]f

d(o,, —05,) =2 da,,, (81

showing that o, must vary linearly with (¢, —,,) across a smooth wave. However,
vield in form (78) also must be satisfied through the wave, showing again that no
stress changes can accumulate unless the wave propagates at an elastic wave speed.
This leads for the same reasons as in Case | to the conclusions that therefore no strain
nor velocity components can vary either, and thus that a steadily propagating shock
wave is not possible at non-elastic wave speeds.

Case 3. The final possibility is the situation in which the material is elastically
compressible and plastic strain increments are of the same order of magnitude as
elastic ones through a smooth wave. In this case. the plane strain condition (74a) that
applied in the previous two cases must be replaced by (74b). This leads to an inde-
pendent restriction on stress variations by substituting it into the 12 component of
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the flow rule (69), and then employing (49) and (45). The other equations restricting
possible stress variations across a steady-state smooth wave in this case are (70), (72)
and yield (68). The analysis of this equation system is quite complicated and will not
be carried out here. However, Shen and Drugan (1990) integrated a set of equations
equivalent to these across what amounts to an arbitrary portion of a steadily pro-
pagating smooth wave. By considering the geometrical shapes of the resulting con-
ditions in stress space. they concluded that these conditions could simultaneously be
satisfied at best at a set of discrete points in stress space, so that no continuous path
for stress change would be possible across the wave. Again, as above. conditions (45)
and (49) then lead to the conclusions that no components of strain nor velocity could
change across the wave, and thus by the foregoing analysis here, a steadily propagating
shock is again ruled out in this case unless it propagates at an elastic wave speed.

3.2.  Implications for plane strain steady-state dvnamic crack propagation in elastic-
ideally plastic Prandtl Reuss -Mises material

One specific implication of the results proved above, which as noted provide
rigorous confirmation of conclusions reached previously by Drugan and Shen (1987),
Leighton et al. (1987} and Shen and Drugan (1990), is that the stress, strain and
velocity fields attending steady-state dynamic plane strain growth of a crack in elastic-
ideally plastic Prandtl-Reuss-Mises material must be fully continuous for all crack
propagation speeds below the material's elastic wave speeds. That is, our analysis
rules out the possibility of a shock moving with such a growing crack.

Surprisingly, then. a recent numerical finite element analysis by Varias and Shih
(1994) [henceforth abbreviated VS] of steadv-state dynamic plane strain crack growth
in both hardening and nonhardening Prandtl- Reuss--Mises materials appears to show
a “shock™ propagating with the crack tip when the crack growth speed is sufficiently
high (but still well below elastic wave speeds). These results are directly at variance
with the conclusions obtained above. Let us examine the particular one of their
solutions for which this disagreement is easiest to see: In Figure 2(c) of VS. their
solution is displayed for the strain field near a dynamically propagating crack tip
with propagation speed of 0.2 times the elastic shear wave speed in nonhardening,
essentially incompressible (v = 0.49) Prandtl-Reuss- Mises material. This solution
exhibits a sizeable jump in shear strain across a line of one element width, extending
a substantial distance from the crack tip at an angle of 90" from the crack line. Yet
the analysis of Case | in Section 5.1 above explicitly and clearly rules out the possibility
ol a strain jJump under such conditions!

VS were aware of this disagreement of their solution with the results obtained
independently by Drugan and Shen (1987) and Leighton er al. (1987), and they
showed that the stress and deformation paths through the “shock™ in their solutions
do not satisfy one or both of (45) and (49) above. This is true both for their numerical
crack growth solutions, and for the discontinuity example they propose in their
Appendix A. Drugan and Shen (1987) and Leighton er ¢/. (1987) obtained (45) and
(49) by heuristic means : they argued that since the jump forms of those cquations
must hold across a shock. i.c.,

in 'GH = —»/)('1[‘!’-55, (82)

1
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. o
le] = = 5, (Iv[n+n]v]). (83)

these imply that (45) and (49) should constrain the stress, strain and velocity paths
through the shock. Thus, VS's argument that (82) and (83) do not demand (45) and
(49) was perhaps plausible at the time their paper was written.

Now. however, the situation is different. Section 3.2 above proves that a shock
wave propagating under steady-stute, nonrotating conditions is identical to a suitably-
chosen steady-state smooth wave in arbitrary materials. Then, Section 4.1 proves that
momentum conservation and compatibility rigorously require that the stress and
deformation paths satisfy (45) and (49) through a smooth wave which propagates
under steady-state, nonrotating conditions, when the variations of field variables
along the wave are negligible compared to their variations through the wave (since
the wave is to model a shock, where this is obviously true). These results are also,
obviously, valid for arbitrary materials. Thus, there no longer appears to be a plausible
way to argue that (45) and (49) need not be satisfied through VS’s proposed ““shocks™.
since their numerical solution imposes steady-state conditions, and the “shocks™
observed do indeed propagate without rotating,.

An additional argument in support of this conclusion is the following: Although
the elastic-plastic material models treated in VS are rate-independent, and hence if
they could sustain shocks such would be mathematically sharp, any real material for
which the VS solutions are believed applicable will actually possess some (possible
minute) rate-dependence, i.e., some viscosity. A shock in such material will have finite
thickness-—that is, it will actually be a propagating narrow transition zone, through
which continuum field quantities vary rapidly but continuously. Thus [and this has
always been the viewpoint of researchers in the shock wave community, as discussed
c.g. by Courant and Friedrichs (1948), Whitham (1974) and Smoller (1983)]. any
shock in an inviscid material model should differ negligibly from one in a material
model that is identical except that it possesses infinitesimal viscosity. Again, a shock
in this latter model will be a narrow transition zonc through which field quantities
vary rapidly but continuously. Within such a transition zone, regardiess of the material
model. we have proved that conditions (45) and (49) would hare to be satistied when
the zone propagates under steady-state conditions. Thus, if one were to re-analyze
numerically exactly the same problem treated by VS, except that their constitutive
model now contained a minute amount of rate dependence, what appears as a shock
in their 1994 paper would necessarily become a narrow ( finite-width) zone of rapid,
continuous transition which propagates under steady-state conditions without rota-
ting. Our Section 4.1 analysis applies directly to this, proving that (45) and (49)
must be satislied through such a continuous transition zone. Thus. the intra-shock
stress/strain/velocity paths actually calculated in the rate-dependent numerical solu-
tions (presuming of course accurate numerical solution ol the fields through the
narrow transition zone) would differ substantially from those implied by the VS
solutions, which VS themscelves point out significantly violate (45) and/or (49). Thus,
the rate-independent results of VS would necessarily differ significantly from the
results with minute rate-dependence, which is physically unacceptable.

One might be tempted to arguc that one assumption of the present analysis, namely
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that variations of field variables along the wave are negligible compared to their
variations through the wave, is violated near the growing crack tip, which VS's
calculations imply is the site of significant strain gradients. Although this might
necessitate further contemplation very close to the crack tip, the “shocks™ exhibited
by VS’s solutions extend, e.g. in the nonhardening case illustrated in their Figure I,
out to a radius on the order of 1/3 the maximum plastic zone dimension. Clearly ours
is an excellent assumption over most of this “shock’s” expanse. as VS always found
its width to be one element thick, regardless of mesh refinement.

The inescapable conclusion appears to be that the discontinuity surfaces present in
the VS computations cannot correspond to actual shock waves in a real material.
This leads to two possibilities : one is that there do exist fully continuous solutions to
the steady-state dynamic crack growth problems studied by VS which their numerical
method was unable to obtain [for example. the full-field counterpart of the shock-
free steady-state asymptotic solution derived by Leighton et al. (1987)]. The other
possibility is more tantalizing : that steadv-state dynamic plane strain crack growth is
not possible, at least in the material model analyzed here. The resolution of this
issue should perhaps be attempted by a different full-field numerical method
which is capable of solving both the nonsteady as well as steady-state dynamic crack
propagation problems, and which for steady-state growth incorporates the
thermodynamics-mandated shock restrictions derived here.
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