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ABSTRACT 
 
A variety of systems can be faithfully modeled as linear 

with coefficients that vary periodically with time or Linear 
Time-Periodic (LTP).  Examples include anisotropic rotor-
bearing systems, wind turbines, satellite systems, etc…  A 
number of powerful techniques have been presented in the past 
few decades, so that one might expect to model or control an 
LTP system with relative ease compared to time varying 
systems in general.  However, few, if any, methods exist for 
experimentally characterizing LTP systems.  This work seeks to 
produce a set of tools that can be used to characterize LTP 
systems completely through experiment.  While such an 
approach is commonplace for LTI systems, all current methods 
for time varying systems require either that the system 
parameters vary slowly with time or else simply identify a few 
parameters of a pre-defined model to response data.  A previous 
work presented two methods by which system identification 
techniques for linear time invariant (LTI) systems could be 
used to identify a response model for an LTP system from free 
response data.  One of these allows the system’s model order to 
be determined exactly as if the system were linear time-
invariant.  This work presents a means whereby the response 
model identified in the previous work can be used to generate 
the full state transition matrix and the underlying time varying 
state matrix from an identified LTP response model and 
illustrates the entire system-identification process using 
simulated response data for a Jeffcott rotor in anisotropic 
bearings. 

1. INTRODUCTION 
  
A number of important dynamic systems can be modeled 

as Linear Time-Periodic (LTP).  When this is the case, it is 

exceedingly important for the analyst to detect and accurately 
model this character since it can lead to instability and 
resonance at frequencies other than those predicted by theory 
for Linear Time-Invariant (LTI) systems.  Floquet and 
Lyapunov developed some important theories regarding linear 
differential equations with periodic coefficients in the late 
1800’s [1], so the theory of time-periodic systems is usually 
called Floquet theory or Floquet-Lyapunov theory.  This theory 
has been applied to a variety of mechanical systems such as 
helicopters, wind turbines or other bladed machines [2], [3], 
mechanisms [4], buckling problems [2], satellites and rotating 
machinery [5], [6], [7], [8].  In his text, Richards [9] gives a 
detailed history of Floquet theory, and reviews applications of 
second order LTP systems, including: mass spectrometry, 
dynamic buckling of structures, elliptical waveguides, and 
electronics.  Sinha and his colleagues [10] have published a 
number of works on the analysis and control of linear and 
nonlinear time-periodic systems.  Montagnier, Spiteri and 
Angeles [4] recently presented a thorough review of Floquet 
theory. 

Despite these advances in the analytical realm, little 
progress has been reported regarding experimental 
characterization of LTP systems.  While methods for 
identifying parametric models of LTI systems are well 
established [11] [12], and a multitude of methods for 
identifying nonlinear systems have been presented [13], the 
same can hardly be said for LTP systems.  In [14], the author 
and Ginsberg took a first step in this direction and presented 
two methods by which the free response of an LTP system can 
be parameterized using standard tools for LTI systems and 
without the need to guess at the system’s model order a priori.  
Tremendous synergy was noted between the free response of 
LTP and LTI systems, so one would expect that an LTP system 
can be characterized almost as easily as an LTI system using 
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the proposed methods.  This work could have significant 
implications in a number of applications where LTP models are 
either difficult to derive analytically or difficult to validate. 

This work expands upon the previous, demonstrating how 
the system’s state transition matrix can be identified from the 
Fourier series response model presented in [14].  Furthermore, 
this work shows that the time varying system matrix can be 
recovered from the state transition matrix if enough of the 
states are measured. 

The following section reviews Floquet-Lyapunov theory 
and summarizes two strategies for identifying the parameters of 
LTP systems from free response data.  The new methods for 
finding the state transition matrix and the system matrix from 
the identified models are then presented.  These methods are 
applied to a system whose parameters vary with time, a simple 
model of a Jeffcott rotor on an anisotropic shaft and anisotropic 
bearings.  Section 4 presents some conclusions. 
 

2. THEORETICAL DEVELOPMENT 

2.1. Floquet-Lyapunov Theory for LTP Systems 
This section presents a brief review of some concepts from 

Floquet Theory.  The equations governing a linear time varying 
system may be written in the following state space 
representation 
 ( ) ( )x A t x B t u= +  (1) 

where x is the system state vector, {u} the inputs to the system, 
and the matrices A(t) and B(t) vary with time.  This work 
considers only the case where the input {u} = 0, in which case 
the state transition matrix can be used to transfer the state 
vector from the initial state x(t0) at time t0 to the state at time t 
as follows 

  (2). )(),()( 00 txtttx Φ=
The semi-group property follows immediately from this 
definition. 

  (3) ),(),(),( 0110 tttttt ΦΦ=Φ
If A(t) is periodic with period TA, then the state transition 

matrix for t ≥ 0 can be reconstructed from the state transition 
matrix for 0 ≤ t < TA as follows [4] 

  (4) n
AA tTttttnTt ),(),(),( 0000 +ΦΦ=+Φ

where n is an integer.  This important result is often exploited 
to efficiently compute the response of LTP systems [2]. 

The Floquet-Lyapunov theorem states that the state 
transition matrix of an LTP system with period TA can be 
decomposed as follows [2] 

 , (5) ( )1
0 0( , ) ( ) exp ( ) ( )t t P t R t t P t−Φ = − 0

0

where R is a constant matrix and P(t) is periodic such that 
P(t+TA)=P(t).  Both matrices can be complex in general [4].  It 
was noted in [14], that if R can be diagonalized 

 , (6) 1)()( −Λ= RRR MMR
then the Floquet-Lyapunov representation can be expressed in 
terms of a set of complex modal parameters with time varying 
mode shapes {ψr} as follows 

 
( ) 1

0 0

1

( , ) ( ) exp ( ) ( )

( ) ( )
R

R

t t t t t t

t P t M

−

−

Φ = Ψ Λ − Ψ

Ψ =
 (7), 

where Ψ(t)=[{ψ1}, {ψ2}, …]   is the time varying modal matrix 
and ΛR contains the constant Floquet eigenvalues of the system. 
2.2. Identifying Models of LTP Systems 

2.2.1. Multiple Discrete-Time Systems (MDTS) Method 
Two methods for identifying the parameters of LTP 

systems were presented in [14].  The first, later dubbed the 
Multiple Discrete-Time Systems (MDTS) method, notes that 
the system in eq. (7) can be treated as a discrete-time LTI 
system if the sample increment is p*TA where p is an integer 
and p ≥ 1.  Alternatively, one can probe the time-varying nature 
of the system using a sample increment of TA/p.  In this case 
one can create an array of LTI responses that reproduce the 
measured response exactly.  Each LTI response has a sample 
increment of TA, each starts at a different initial time, and the 
initial times span [0, TA).  The collection then characterizes the 
time varying nature of the system.  A derivation of the MDTS 
method, based on that which was first presented in [14], is 
included in Section 1 of the Appendix for convenience. 

2.2.2. Fourier Series Expansion (FSE) Method 
The other approach, later dubbed the Fourier Series 

Expansion (FSE) approach, is derived by considering the 
summation form of eq. (7). 

  (8), 
( ) ( )

( ) { }{ }
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0 0
1
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( , ) exp ( )
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R rr
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R r rr
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=
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=

∑

where N denotes the number of modes, ψr(t) are the mode 
vectors or the columns of [Ψ(t)], and Lr(t) are the modal 
participation factors, or the columns of [Ψ(t)] -T.  The residue 
matrices (AR)r are the product of a periodic column vector and a 
constant row vector, and hence are themselves periodic.  
Because they are periodic, they can be readily expanded in a 
Fourier series.  They are assumed to be adequately represented 
using a fixed number (2*NR + 1) of terms so that the response 
may be written as follows. 
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NN
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t t B im t tλ ω
= =−

Φ = + −∑ ∑  

 (9) 
This is simply the free response of an LTI system with 
2*N*(2*NR+1) eigenvalues.  The LTP system actually has only 
2*N eigenvalues, but the Fourier series coefficients of the 
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residue matrices, which are composed of the time-varying 
mode vectors) modulate the response so that it appears that the 
system has 2*N*(2*NR) additional eigenvalues.  Hence, the free 
response can be parameterized using an LTI system 
identification routine, following which one can collect the 
replicates of each eigenvalue and their associated coefficients. 

While this approach is certainly possible, the author has 
found it much more convenient to use the MDTS method 
whenever the sample increment allows because it yields 
Frequency Response Functions (FRFs) that are easier to 
interpret because the model order is readily apparent.  
However, the FSE representation is extremely useful, as will be 
shown in the following section.  In cases where an FSE model 
is needed, the author has found it more convenient to use the 
MDTS method to identify a model for the system and then to 
expand the time varying residue matrices found by the MDTS 
method into a Fourier series model. 
2.3. Extensions 
The previous work [14] discussed finding parametric models 
for the free response of an LTP system, yet it did not discuss 
how one would then go about determining the State Transition 
Matrix (STM), nor how one could determine the time-varying 
state matrix A(t).  This section addresses these two issues. 

2.3.1. Reconstructing the State Transition Matrix 
using the identified response model 
In practice, one is likely to measure the response y(t) of an LTP 
system to an initial condition at a certain number No of outputs 

  (10). 0 0( ) ( , ) ( )y t C t t x t= Φ
The output matrix C relates the outputs to the state vector x(t).  
The measured response y(t) uniquely determines the state of the 
system if C is full rank, in which case 

 1( ) ( )x t C y t−=  (11). 

If the system is a second-order structural dynamic system, 
defined by time varying mass, stiffness and damping matrices, 
then half of the states are simply the derivatives of the other 
half.  Furthermore, in these cases one often has more output 
measurement locations than states, so an arbitrary but sufficient 
state vector can be constructed from the displacement 
responses by differentiating them.  For the present development 
we shall assume that the proper number of outputs was 
measured and that they are the desired states of the system 
matrix, so C will be taken to be C = [INxN , 0NxN].  The states 
measured are assumed to be those describing the displacement 
of the system, so the remaining states are their derivatives. The 
response is fit to the following LTP model where {By} are the 
coefficients of a FSE of the residue vectors of the response and 
λr are its eigenvalues. 
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The missing states can be found by differentiating the previous 
equation resulting in the following. 
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 (13) 

A valid state vector can now be recovered as 

 , (14) 
( )
( )

( )
y t

x t
y t
⎡ ⎤

= ⎢
⎣ ⎦

⎥

Assuming that C is N by N.  One now has an FSE model for 
the following. 

 0 0( ) ( , ) ( )x t t t x t= Φ  (15) 

Both x(t) and x(t0) in the previous equation are known using the 
models in eqs. (12) and (13), yet one would need 2N 
independent pairs of responses and initial conditions to 
uniquely determine the STM.  Fortunately, one can generate the 
required responses by shifting the response in eq. (15) by nTA, 
where n is an integer, and using the periodicity of the STM. 
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 (16) 
One can use eqs. (12) and (13) to show that each of the 
responses in eq. (16) has the following form, 
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 (17), 
which was simplified by noting that exp(imωAnTA) = 1. 

The STM is then found by solving the following linear 
system of equations. 

 
( )

( ) ( ) ( ) ( )( )
0 2 1

0 0 0 02 1

( ) ( 2 1 )

, 2

N A

AN

x t x t N T

t t x t x t N T

−

−

⎡ ⎤+ − =⎣ ⎦

1⎡ ⎤Φ + −⎣ ⎦
 (18) 
Substituting eq. (17) into the matrix on the left hand side 
above, eq. (9) for the STM above, and then matching terms in 
the summations, it becomes apparent that one can take 

t−

 (12) 
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 (19), 
and then evaluate at t0 to find {Lr(t0)}. 

2.3.2. Reconstructing the Time Varying System Matrix 
Once a FSE model for the State Transition Matrix has been 
identified, one can use the STM differential equation: 

 ( )0( , ) ( , )d t t A t t t
dt
Φ = Φ

X

Y

0  (20) 

to solve for the time varying system matrix A(t) as follows. 

 ( ) 1
0 0( , ) ( , )dA t t t t t

dt
−⎛ ⎞= Φ Φ⎜ ⎟

⎝ ⎠
 (21) 

This was accomplished numerically in the applications that 
follow at a number of time steps t in the interval [0,TA).  The 
derivative of the STM was found by differentiating the FSE, 
analogous to what was done in eq. (13). 

3. APPLICATION 

3.1. Response Model Identification 
The proposed system identification methods will be 

demonstrated by applying them to simulated data from an LTP 
system.  The system represents a Jeffcott rotor on an 
anisotropic shaft that is supported by anisotropic bearings.  A 
lumped parameter model of this system is shown in Figure 2, 
which consists of a point mass suspended by two orthogonal, 
massless springs with spring constants kRx and kRy.  The springs 
are attached to a massless turntable that turns at constant speed 
Ω.  The turntable is fixed to ground by two massless springs kFx 
and kFy.  The equations of motion for this system are given in 
the Appendix.  Stiffness proportional damping is added to the 
system via the factor cf.  The parameters used in this example 
are: kRx = 1, kRy = 1.2, cf = 0.004, kFx = 1, kFy = 1.5, m = 1, Ω = 
0.5.  This represents a system whose parameters vary 
significantly with time; the natural frequencies of the system 
with the shaft held fixed at various angles ranged from 0.707 
and 0.911 rad/s.  Stability analysis, performed by computing 
the state transition matrix (STM) at the end of one cycle using 
numerical integration and then finding the Floquet multipliers 
of the STM, reveals that the system is unstable for 0.73 < Ω < 
0.90.  The system is always stable if kRx = kRy. It would 
certainly be important to detect and properly characterize the 
time-varying nature of this system if it is to operate at high 
speeds. 

 

 
Figure 1:  Anisotropic shaft, due to a keyway, on anisotropic 

bearings.  This system can be modeled as Linear Time-
Periodic (LTP). 
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Figure 2: Schematic of Simple LTP System 

The response of the system to a unit impulsive force, 
administered at an angle of 45 degrees from the x axis, was 
found.  This is equivalent to the free response of the system to 
an initial velocity in the direction of the force.  Specifically, the 
initial state vector is x0 = [0, 0, 0.707, 0.707]T.  The equations 
of motion are periodic with a period TA = 2π, which 
corresponds to one half of a revolution of the shaft.  The 
sample increment was chosen to be Δt = 0.12566, 
corresponding to 50 samples per half revolution of the shaft.  
The impulse response was found using time integration, via 
Matlab’s “ode45” function.  The response was evaluated over a 
time window encompassing 512 revolutions of the shaft, which 
was adequate to allow the impulse response to decay to a small 
fraction of its initial amplitude.  The response was then 
contaminated with Gaussian white noise whose standard 
deviation was equal to 5% of the maximum response in each 
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coordinate, to simulate a somewhat more realistic scenario.  
Also, the states corresponding to the velocities of the masses 
were not used in the identification process; only the positions x 
and y were made available. 

Figure 3 shows the noise contaminated time response of 
the two position state variables x and y.  An inset is also 
provided where markers highlight the response points at which 
the turntable (or shaft) is at either 0 or 180 degrees.  As 
discussed previously, this latter collection of points can be 
described by an LTI, discrete time system.  One should also 
note that this collection of points aliases the true response 
frequency. 

The discrete Fourier transform of the signals was found 
and is shown in the upper pane of Figure 4.  The response is 
dominated by two resonance peaks at about 0.8 rad/s.  Two 
other pairs of peaks are also seen at 0.2 and 1.8 rad/s, although 
the latter are almost completely masked by the noise.  Hence, 
this two-degree of freedom LTP system appears to have six 
active modes in this impulse response.  This phenomenon can 
be interpreted in light of eq. (9), which states that the time 
varying mode vectors comprising the STM give the appearance 
of additional modes. 
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Figure 3:  Noise contaminated time response of LTP 

system.  Inset shows the response over the first few cycles.  
Circles mark the response points for which the shaft is at an 

angle of zero degrees. 
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Figure 4: (top) DFT of time response.  (bottom) DFT of two 

MDTS responses. 

The response was also decomposed according to the 
MDTS method, collecting the samples of the response for 
which the system matrices are the same (i.e. at 0+θ and 180+θ 
degrees).  The response was sampled fifty times per half 
revolution of the shaft, so this results in 50 sets of time 
responses in both the x and y directions.  (Figure 3 highlighted 
the first few points of one of these time responses.)  The DFTs 
of two of these time responses are shown in the bottom pane of 
Figure 4.  The 1st and 23rd set of responses are shown 
corresponding to instants when the shaft was at 0° or 180° (1st 
x and y) and 79.2° or 259.2° (23rd x and y).  Each FFT shows at 
most two resonant peaks, and the amplitude of the peaks is seen 
to vary with shaft angle. 

Either of the sets of responses in Figure 4 could be used to 
identify a response model for the system.  The MDTS method 
was chosen because it can be implemented using standard 
system identification techniques for LTI systems.  To perform 
identification on the full response (in the upper pane of Figure 
4) is not as straightforward since it would require either: 1.) 
customizing an identification routine to enforce a constraint 
that the identified eigenvalues for each mode have the same 
real parts and imaginary parts that differ by integer multiples of 
ωA, as proscribed by eq. (9) or 2.) post processing the results 
obtained using a standard system ID routine to enforce these 
constraints. 

The set of 100 MDTS response FFTs were processed using 
the Algorithm of Mode Isolation [15-18], which considered all 
sets of responses simultaneously, and automatically identified 
both of the modes of the system, assuring that the eigenvalues 
identified were appropriate to the total set of measurements.  
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The respective residues for each response point-shaft angle 
combination were also identified by AMI, and the algorithm 
verified that only two modes were present in the response by 
observing that the response was reduced to noise after 
removing these modal contributions from the data.  The 
identified eigenvalues were λaliased = -0.00202+ i*0.158  and -
0.00202 + i*0.218. 

At this point one must un-alias these eigenvalues in order 
to proceed.  This is done by returning to the top pane in Figure 
4 and noting that the two dominant peaks occur at 0.78 and 
0.84 rad/s.  Assuming that these peaks correspond to m = 0, or 
that the system’s time varying terms are smaller than its time-
invariant terms, we deduce that the un-aliased eigenvalues are 
λr = (λaliased)* + 1*ωA.  The associated residue vectors for each 
of these modes can now be transformed to a common starting 
time of zero as described in the Appendix.  The real and 
imaginary parts of the resulting residues as a function of shaft 
angle are shown in Figure 5.  Both the real and imaginary parts 
in most of the directions vary significantly with shaft angle in a 
sinusoidal manner, although the estimated residues are 
somewhat jagged, presumably due to the effect of the noise 
added to the responses. 
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Figure 5:  Residue vectors identified by AMI algorithm for 

LTP system using MDTS processing. 

Since two independent states have been measured, and the 
system has only two modes, the response model identified can 
be used to generate the state transition matrix and the state 
matrix for the LTP system using the methods developed in 
Section 2.3.  The following subsection applies these methods to 
the identified response model and evaluates the results. 
3.2. State Transition and System Matrices 

The State Transition Matrix (STM) and the time varying 
system matrix were derived from a Fourier series (FSE) model 
for the response in a Section 2.3.  An FSE model was derived 
from the MTDS model identified in Section 3.1 in order to 

apply the relations in Section 2.3.  Fortunately, this is easily 
done by simply finding a Fourier Series expansion of the 
MTDS residues and then retaining only the significant 
coefficients.  This was implemented using a DFT algorithm, 
and three terms found to be significant for each residue (NR=1). 

The resulting coefficients were then used to reconstruct the 
state transition matrix using the following procedure.  The 
Fourier Series model for the residue matrices provided the 
{B}r.m coefficients required in eq. (19) to define the Floquet 
mode shapes {ψ(t)}.  These were evaluated at zero and inserted 
into eq. (18) to find the modal participation factors {Lr(t0)}.  The 
mode shapes and modal participation factors then define the 
state transition matrix via eq. (8).  This representation is easily 
differentiated, resulting in a new set of coefficients {Bdiff}r.m 
defining the Floquet mode shapes of the derivative of the state 
transition matrix.  These two models were evaluated at fifty 
instants over the fundamental period of the LTP system (i.e. in 
the time interval [0,2π)), and eq. (21) was used to solve for the 
system matrix A(t). 
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Figure 6:  Sample coefficients of the time varying system 
matrix A(t).  (solid) Actual coefficient as a function of shaft 

angle, (dash-dot) Coefficient estimated from noise 
contaminated response data. 

Figure 6 shows two coefficients of the state matrix 
estimated using this procedure, compared with the actual 
coefficients from the analytical model used to generate the 
response.  The A(3,1) and A(3,2) coefficients correspond to the 
(1,1) and (1,2) elements of the stiffness matrix for this system.  
The horizontal axis in the figure shows the shaft angle, which is 
related to time by θ = Ωt.  Observe that both of the coefficients 
were very accurately estimated using the proposed procedure, 
even though the response data used was contaminated with a 
significant level of noise. 

4. CONCLUTIONS 
A method was presented that identifies the time varying 

state matrix and state transition matrix of a linear time-periodic 
(LTP) system from free response data.  The method was then 
demonstrated using synthesized, noise contaminated response 
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data from a simple LTP system.  A response model was first fit 
to the response data using a standard system identification 
routine for linear time-invariant (LTI) systems and the methods 
presented in [14].  The state transition matrix Φ(t,t0) and 
accompanying time-periodic system matrix A(t) were then 
derived for the chosen states.  The method was shown to 
provide highly accurate estimates of the coefficients of the 
system matrix, even though the responses used to find them 
were contaminated with substantial noise.  Furthermore, the 
most difficult aspect of the procedure, identifying the 
eigenvalues of the LTP system and its model order from the 
response data, was easily performed using a standard system 
identification routine for LTI systems.  These methods could be 
applied to detect asymmetry (e.g. due to a crack) in the shaft of 
a rotor-bearing system, to experimentally derive models for 
complex rotating machines such as wind turbines or 
helicopters, and to validate analysis models of LTP systems. 
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ANNEX A 
 

1. METHODS FOR IDENTIFYING THE PARAMETERS 
OF AN LTP SYSTEM 

In this section we shall present two methods by which the free 
response of a periodically time varying system can be 
represented exactly by that of an LTI system.  The first method 
consists of discretizing the PTV system over its fundamental 
period, resulting into a collection of LTI systems of the same 
order as the PTV system, corresponding to different portions of 
the fundamental period.  The second method expands the 
modal matrix of the Floquet representation in a Fourier series, 
resulting in a single, although possibly high order, LTI 
representation for the PTV system.  In either case, the 
parameters of the LTI system (or collection of systems) can be 
identified from the transformed response using standard system 
identification techniques.  The parameters identified for the LTI 
system are then easily related to those of the PTV system.  The 
relative merits of these two methods will be discussed 
throughout the remainder of the paper. 
1.1. Method #1:  Multiple Discrete-Time Systems 
(MDTS) 

From the state transition matrix representation in eq. (4), 
one can construct a discrete time system whose response 
matches that of the LPTV system at the instants t0 + nTA where 
n is an integer.  First define x(n) = x(nTA+t0) where n = 0, 1, 2, 
…  Then one can see that 

  
 (22), 

)()()(),()1( 000 nxtAnxtTtnx DA =+Φ=+

where the matrix AD(t0) is constant for a given initial time t0.  
This shows that the samples at instants separated by integer 
multiples of TA are related by a linear time invariant system 
whose parameters depend only on the initial time t0.  As a 
result, one can identify the parameters of the matrix AD(t0) 
using standard methods for LTI systems, so long as the samples 
are taken at instants separated by integer multiples of TA. 

This method requires that one sample synchronous with 
TA.  However, it might be desirable to sample the response at a 
higher or lower rate.  This can be achieved by setting the time 
increment Δt = TA/P or Δt = P*TA, where P is an integer.  
Setting Δt = P*TA corresponds to sampling once every P 
periods of the system.  The system matrix identified from such 
a response would then be (AD)P. 

The more interesting situation occurs when one samples at 
a faster rate (such that Δt = TA/P).  In this case one can learn 
something about the time varying nature of A(t).  In this case, 
the response is separated into the following collection of 
responses. 
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 (23), 
Each response yK can be parameterized by a matrix (AD)k, 
pertaining to a different initial time tk where tk = k*TA/P for k = 
0,1,…P-1.  The system parameters can then be determined by 
applying a standard, LTI modal parameter identification routine 
to each response yk independently.  In the time domain, for 
example, one might use the Least Squares Complex 
Exponential method or a Subspace method [19, 20].  If the 
responses are transferred to the frequency domain, the Least 
Squares Complex Frequency Domain Algorithm (LSCF) [21] 
or the Algorithm of Mode Isolation (AMI) [15, 22-24] could be 
used. 
Some of the aforementioned algorithms estimate the system 
matrix (AD)k directly whereas others identify the modal 
parameters that comprise it.  The modal parameters are related 
to the system matrix as follows 

 ( ) ( ) 1−Λ== kkkkDkD MMAtA  (24), 

where Mk is the modal matrix whose columns contain the state 
space mode vectors and Λk is a diagonal matrix of eigenvalues. 
Comparing equation (24) with equation (7) and recalling that 
AD is a state transition matrix, one can see that when the 
Floquet state transition matrix in eq. (7) is diagonalizable, the 
eigenvalues of each matrix (AD)k should be equal (i.e. Λk = Λ = 
exp(ΛRTA) for all k) and their respective mode vectors should 
be the periodic Floquet mode vectors  -.  In such a case, one 
can readily relate the modal parameters of the systems (AD)k to 
the Floquet-Lyapunov representation.  This was found to be the 
case for the PTV system presented herein using a variety of 
different parameter sets. 
When the eigenvalues Λk of (AD)k are not a function of k, the 
modal parameters of the systems (AD)k can be found in a single 
pass using a “common denominator” parameter identification 
algorithm.  The set of responses {yk} are processed as if they 
resulted from a single SIMO experiment with No*P outputs.  
This results in a global estimate of the eigenvalues, and an 
estimate of the mode shapes for each system (AD)k.  For some 
systems this treatment might entail processing data from a large 
number of outputs simultaneously, in which case the authors 
recommend using either the AMI or the LSCF algorithms. 
At this juncture it is important to note that the imaginary parts 
of the eigenvalues of the matrices (AD)k, even when constant 
with k, can differ from the Floquet eigenvalues by an integer 
multiple of  the fundamental frequency of the parameters of the 
LTP system ωA=2π/TA.  This aliasing phenomenon is a well 
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known feature of Floquet-Lyapunov theory [2].  Moreover, it is 
reasonable considering that the matrices (AD)k are only related 
to the system response at the instants tk + nTA.  However, if one 
considers the response at all time instants (i.e. for [t0, t1, …, tP, 
tP+1]), one can usually determine the integer multiple that 
relates the aliased eigenvalues to the true Floquet eigenvalues, 
as will be elaborated in the following sections. 
It is important to note that although that the residues identified 
from the collection of LTI systems used in Method #1 are 
proportional to the mode vectors when taken individually, the 
constant of proportionality for each residue is different.  They 
must be rescaled so that the constant of proportionality is not a 
function of shaft angle.  To do this, we appeal to the summation 
form of the Floquet representation of the response in eq. (30).  
Applying the initial conditions to eq. (30), the impulse response 
in terms of the modal parameters follows. 
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 (25). 
The responses at time instants separated by TA, which are 
processed by using Method #1, follow. 
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(26), 
The strategy in Method #1 is to process these responses 
globally, as if they resulted from a single LTI system.  As a 
result, the identification routine finds the following 
representation for the impulse response: 
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 (27), 
Comparing eq. (26) and (27) reveals that the residues identified 
via Method #1 for various initial times ti are related to the true 
residues as follows. 

( ) ( ) ( )(exp)( 0, tttAA irriRirIdent −= λ  

 (28), 

If the Floquet eigenvalues are known, it is trivial to solve for 
the Floquet residues, which are denoted AZero because they (for 
all i) relate to the same initial condition at t0. 

( ) ( ) ( )(exp 0,, ttAA irirIdentirzero )−−= λ
 (29). 

 
1.2. Method #2:  Fourier Series Expansion (FSE) 
The Floquet representation of the response in eq. (7) can be 
expressed in summation form as follows 
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where N denotes the number of modes, ψr(t) are the mode 
vectors or the columns of [Ψ(t)], and Lr(t) are the modal 
participation factors, or the rows of [Ψ(t)] -1.  The residue 
matrices (AR)r are the product of a periodic column vector and a 
periodic row vector, and hence are themselves periodic.  
Because they are periodic, they can be readily expanded in a 
Fourier series.  Here we shall assume that they can be 
adequately represented using a fixed number (2*NR + 1) of 
terms so that the response may be written as 
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where [B]r,m is the mth complex Fourier coefficient of the rth 
residue matrix and ωA =2π/TA.  Factoring out the summations 
reveals the nature of the response. 
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 (32) 
This can be thought of as the impulse response of an LTI 
system with 2*N*(2*NR + 1) eigenvalues λr + i*m*ωA.  The 
amplitude of each mode’s response is determined by the 
magnitude of the Fourier coefficient of its residue matrix.  The 
response and hence the state transition matrix must be real, so 
one can see that every complex eigenvalue must be 
accompanied by it’s complex conjugate and that the Fourier 
coefficients of the residue matrices must also be real or part of 
a complex conjugate pair. 

The response in eq. (32) is indistinguishable from the 
response of a state-space LTI system having eigenvalues λr + 
i*m*ωA.  Hence, one can identify the parameters in eq. (32) 
from the time response or FFT of the time response directly 
using any standard parameter identification algorithm for LTI 
systems.  Equation (32) can then be used to interpret the result 
and/or reconstruct the Floquet representation. 
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2. EQUATIONS OF MOTION FOR SIMPLE LTP 
SYSTEM (JEFFCOTT ROTOR) 

The equations of motion follow where the state vector contains 
the response in the x and y directions in the fixed reference 
frame. 
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 (33) 
Note that the damping matrix is proportional to the 

turntable stiffness matrix via the factor cf. 
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