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ABSTRACT 
 
A variety of systems can be faithfully modeled as linear with coefficients that vary periodically with 

time or Linear Time-Periodic (LTP).  Examples include anisotropic rotor-bearing systems, wind turbines 
and nonlinear systems linearized about a periodic trajectory; all of these have been treated analytically in 
the literature.  However, few methods exist for experimentally characterizing LTP systems.  This paper 
presents a set of tools that can be used to experimentally characterize an LTP system, using a frequency 
domain approach and utilizing existing algorithms to perform parameter identification.  One of the 
approaches is based on lifting the response to obtain an equivalent Linear Time-Invariant (LTI) form and 
the other based on Fourier series expansion.  The development focuses on the pre-processing steps 
needed to apply LTI identification to the measurements, the post-processing needed to reconstruct the 
LTP model from the identification results and the interpretation of the measurements.  This approach 
elucidates the similarities between LTP and LTI identification, allowing the experimentalist to transfer 
insight from time-invariant systems to the LTP identification problem.  The approach determines the 
model order of the system, and post processing reveals the shapes of the time-periodic functions 
comprising the LTP model.  Further post-processing is also presented that allows one to generate the full 
state transition matrix and the time-varying state matrix of the system from the parametric model if the 
measurement set is adequate.  The experimental techniques are demonstrated on simulated 
measurements from a Jeffcott rotor mounted on an anisotropic, flexible shaft, supported by anisotropic 
bearings. 

1. INTRODUCTION 
Many important dynamic systems can be modeled as Linear Time-Periodic (LTP).  When a 

system has periodically varying parameters, it is exceedingly important to discover and accurately model 
this character since it can lead to parametric resonances which are not present for a Linear Time-
Invariant (LTI) approximation to the system.  Floquet initiated the study of LTP systems in the 1800’s [1], 
and modern Floquet theory has been applied to a variety of mechanical systems such as helicopters [2], 
wind turbines or other bladed machines [3], [4], mechanisms [5], buckling problems [3], rotating 
machinery [6-9] and many others [10-12].  Linear time-periodic system models are also frequently 
encountered in analysis of nonlinear systems, as it often proves beneficial to linearize the nonlinear 
system about a periodic trajectory to study its stability. 

Much progress has been made in the past twenty years towards analysis and control of linear 
and nonlinear time-periodic systems, as many concepts for LTI systems are readily extended to LTP 
systems [5, 13].  On the other hand, experimental techniques are well developed for LTI systems, but 
LTP system identification has received relatively little attention.  Experimental methods are needed in a 
number of applications, for example when it is impossible to determine the parameters or periodic 
functions comprising the LTP model for a system from first principles.  They may also be useful to monitor 
the health of a system [14], to validate analytical models and to diagnose modeling errors. 

Many texts cover system identification approaches for general time-varying systems, but these 
either require a large ensemble of synchronized data or else are not appropriate if the system’s 
parameters vary quickly with time [15].  Two early works that overcome these limitations are those of 
Hench [16] and Verhaegen and Yu [17].  Both presented subspace methods for LTP systems.  The latter 
was recently extended by Felici et al. so that one can extract the state sequence with a consistent basis 
[18].  Liu presented a similar method in [19] that is applicable to LTP and to arbitrarily linear time-varying 
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(LTV) systems, and applied his method to simulated measurements from a robot arm linearized about a 
periodic trajectory.  Shi, Law and Li recently expanded upon that work applying the algorithm to simulated 
measurements from various systems [20].  Peters and Wang [21] independently arrived at related 
methodology that sought to more accurately and efficiently generate the state transition matrix of an 
analytical LTP system [21] and to allow one to characterize the effects of hidden aerodynamic states [22].  
They subsequently applied their technique to find the Floquet multipliers of a laboratory helicopter rotor 
[23, 24].  All of these are time-domain methods and focus on the discrete-time representation for an LTP 
system.  The advantages and limitations of subspace methods for LTI systems are fairly well established 
now [25, 26], and in many instances frequency domain approaches are preferred [27-29].  Furthermore, 
none of these works proposes how one may recover the continuous-time system matrices from the 
discrete-time model that is identified. 

Werely and Hall developed the concept of harmonic transfer functions (HTF) to treat LTP systems 
in the frequency domain [30].  Siddiqui further developed these ideas in his thesis [31] and applied them 
to synthesized data.  The methods were also recently applied to measurements from a wind tunnel model 
of a helicopter rotor [32], although no meaningful time-periodic behavior could be detected in those 
measurements.  Van Landuit et al. [33] independently developed an elegant algorithm that shares many 
of the elements of their approach;  Either approach tends to require long time records and carefully 
controlled inputs [33].  Of the works cited thus far, only those in [24], [32] and [33] have employed actual 
experimental measurements from mechanical systems.  A number of other methods also exist that are 
applicable to both nonlinear and LTP systems, although most are limited to single-degree of freedom or 
low order systems, such as the restoring force method [34, 35], the Hilbert transform, and a few others 
[36-38]. 

This work presents a frequency-domain approach that allows one to characterize an LTP system 
using the same methodology, algorithms and intuition that are used for LTI systems.  The focus is on 
developing the pre- and post-processing needed so that any suitable LTI identification routine can be 
used to process free response measurements from an LTP system, rather than develop a new algorithm 
that is specific to LTP identification.  Particular emphasis is placed on elucidating the differences between 
the LTP response and that of an LTI system because that understanding is critical to finding the proper 
system order and to correctly distinguishing time-periodic behavior from noise, anomalies due to the 
transducers or instrumentation, signal processing errors, and other factors that are common to 
experimental measurements.  One of the advantages of this approach is that it allows experimentalists to 
transfer insight from LTI identification to the LTP problem.  Assuming that the fundamental period of the 
system is known, a lifting scheme [17, 39] is used to transform the measurements into a set of responses 
that can be described by an LTI model.  A Fourier series description is also developed that can, in 
principle, be used to address the case where the fundamental period is not known.  The Fourier series 
description used here is the converse of the Harmonic Transfer Function approach developed in [30-32].  
Either approach identifies a parametric model for the modal parameters of the STM, which can be used to 
characterize the system [40].  This work also shows how one can estimate the STM and the time-varying 
state matrix of the system if the measurements are of sufficient quality. 

One important feature of this approach is that it does not require an initial guess regarding the 
system’s model order nor restrictive assumptions about its form.  The model order is identified by 
interrogating the response data, as is done for LTI systems, and nothing is assumed about the model 
form except that it is time-periodic.  Aspects of the methods presented here were developed by the author 
in a few preliminary works [41, 42].  They have recently been applied to identify LTI structural modes from 
continuous-scan laser vibrometer measurements [43, 44], where the LTP response has many modes with 
complicated time-periodic patterns, so the aforementioned features have proved highly beneficial.   

This paper is organized as follows.  Section 2 reviews Floquet theory and presents two strategies 
for identifying the parameters of LTP systems from free response data.  Methods for finding the state 
transition matrix and the system matrix from the identified models are then presented.  These methods 
are applied to an analytical system whose parameters vary with time in Section 3, which consists of a 
simple model of a Jeffcott rotor on an anisotropic shaft and supported by anisotropic bearings.  Section 4 
presents some conclusions. 

2. Theoretical Development 
The following section briefly reviews some pertinent concepts from Floquet Theory.  Section 2.2 

presents two descriptions that can be used to identify parametric models of LTP systems using LTI 
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methods, and Section 2.3 describes how to reconstruct the LTP state transition matrix and state matrix 
from the parametric model. 

2.1. Review of Floquet Theory for LTP Systems 
The equations governing a linear time-varying system may be written in the following state space 

form 

 
( )
( )

x A t x

y C t x

=

=
 (1) 

where x is the N×1 system state vector, y the No×1 vector of outputs and the matrices A(t) and C(t) are 
periodic with period TA so that A(t + TA) = A(t) and C(t + TA) = C(t).  The state transition matrix can be used 
to transfer the state vector from the initial state x(t0) at time t0 to the state at time t as follows 

 )(),()( 00 txtttx Φ= . (2) 

Floquet’s theorem [45] states that if the state transition matrix of an LTP system with period TA is 
diagonalizable, then it can be decomposed as follows, 

 ( ) 1
0 0 0( , ) ( ) exp ( ) ( )Rt t t t t t −Φ = Ψ Λ − Ψ  (3) 

where Ψ(t)=[{ψ1}, …, {ψN}] is the time varying modal matrix of the STM, N denotes the number of modes 
and ΛR is a diagonal matrix containing the Floquet exponents of the system.  The Floquet multipliers μr 
are related to the Floquet exponents λr by μr = exp(λrTA).  The Floquet exponents can be determined from 
the Floquet multipliers only up to a constant, 

  ( )ln r
r A

A

in
T
μ

λ ω= +  (4) 

where ωA = 2π/TA and n is an arbitrary integer.  This is of little consequence because one can correctly 
reconstruct the STM in eq. (3) with any n, and likewise all of the following is valid for any n.  However, as 
the strength of the systems time periodicity decreases, the mode vectors {ψr(t)} reduce to constant 
vectors only for a specific n. 

Equation (3) can be expressed in summation form as follows 
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where { }0( ) T
rL t is the rth row of Ψ(t0)-1.  The residue matrices ( )r

R tΦ  are the product of a periodic 
column vector and a periodic (or constant) row vector, and hence are periodic and rank one.  The model 
for an observed response obtained by combining eq. (1), (2) and (5) resulting in 
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where ( )Y rR t  is the residue of the observed response. 

2.2. Identifying Parametric Models for LTP Systems 
The following subsections show how the free response of an LTP system can be exactly 

parameterized as an LTI system using two different methods.  The pre- and post-processing necessary to 
extract the parameters of the LTP system from the output of an LTI system identification routine are 
presented, and important issues regarding the selection of the LTI identification routine are enumerated. 
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2.2.1. Lifting Approach 
Consider the response in eq. (5), sampled at instants tn = t0 + nΔt for n = 0…Ns-1 and with Δt = 

TA/P, so the response is sampled an integer number P times per fundamental period and an integer 
number of cycles Nc= Ns/P are collected.  The periodicity of ( )Y r

R t  effectively vanishes if one always 
samples at the same point within the fundamental period, so the sampled response of the system to a 
single initial condition is exactly represented as a superposition of exponentials with constant amplitudes.  
This idea has been used in a few previous works [18, 38, 46], where it was called “lifting.”  The lifted 
response is 

 0 1 1[ , , , ]L T T T T
Py y y y −= , (7) 

where yk is the response at the time instants tn for n=k+mP for k = 0…P-1 and m = 0…Nc-1. 
The free response of the lifted system has the following form 

 ( )
1

( ) exp 0... 1
N

L Ld
r r A c

r
y t R mT m Nλ

=

= = −∑ , (8) 

where RLd
r is related to Rk,r in the same way that yL is related to yk, and 

 ( ), 0( ) exp ( ) 0... 1k r Y k r r kR R t t t k Pλ= − = − . (9) 

The exponential term is important because it accounts for the delay (hence the d in the notation RLd
r ) 

between t0 and the beginning of each response yk.  For convenience, we also define RL
r which is identical 

to RLd
r but without the exponential term, which is the lifted form of RY(t)r.  Equation (8) has the same form 

as the response of an LTI system, so LTI parameter identification routines can be applied either to yL(t), to 
a discrete time representation of eq. (8), or to its frequency domain dual 
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which also has the standard form for an LTI system [47].  In either case, an LTI algorithm will extract the 
residue vectors RLd

r and Floquet Exponents from the responses. 
By analogy with LTI systems, measurements from Ni different initial conditions can be considered 

to form an No×Ni matrix of responses at each frequency, in which case it follows from the definition of RLd
r 

that the resulting residue matrices are rank one, each column being proportional to the mode vectors 
C(tk){ψr(tk)}, just as for an LTI system.  Hence, concepts such as the Mode Indicator Function [47, 48] and 
MIMO identification [49], which are important tools for detecting close natural frequencies, are directly 
applicable.  If P is large, then there will be a large number of outputs and one should seek an algorithm 
that can efficiently handle that case, such as the Least Squares Complex Frequency Domain Algorithm 
(LSCF) [50] or the Algorithm of Mode Isolation (AMI) [51-54].  One important feature of all of these 
approaches is that they consider all of the responses simultaneously to obtain the best global estimate of 
the Floquet exponents. 
 One important difference between identification of the lifted LTP system and standard LTI 
identification is that the bandwidth of YL(ω) is limited to half the fundamental frequency ωA, which may 
alias the lifted response.  In that case, one can account for the aliasing using the sampled (star *) Laplace 
transformation [39, 55], which is equivalent to fitting the response to a model with Z-domain polynomials 
[49], which have the same form as eq. (10) but with iω replaced with exp( )Az i Tω= .  However, the 
distinction is usually not important for lightly damped structures if the Floquet exponents are not too close 
to 0 or ωA/2. 

Whatever approach is used, the modal parameter identification routine returns an estimate for λr 
and the rank one residue matrices RLd

r.  One can then estimate RL
r by multiplying each block of RLd

r by 
exp(-λr(tk-t0)). Note that this multiplication involves the identified Floquet exponents, whose imaginary part 
contains an arbitrary integer multiple of ωA.  Hence, the estimated RL

r should always be periodic, but the 
Fourier series expansion of RL

r may be shifted by an arbitrary integer.  This is important only when 
interpreting RL

r because the arbitrary integer vanishes when combining RL
r and λr to form the STM. 
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2.2.2. Fourier Series Expansion (FSE) Method 
Because the residues ( )Y rR t  in eq. (5) are periodic, they can be readily expanded in a Fourier 

series.  Here we shall presume that they can be adequately represented using a fixed number (2*NR + 1) 
of terms so that the response may be written as 

 ( ), 0 0
1

( ) exp( ( )) exp ( )
R

R

NN

r m A r
r m N

y t B im t t t tω λ
= =−

⎛ ⎞
= − −⎜ ⎟

⎝ ⎠
∑ ∑  (11), 

where Br,m is the mth complex Fourier coefficient of the rth residue.  Factoring out the summations, the 
nature of the response is revealed. 

 ( )( ), 0
1

( ) exp ( )
R

R

NN

r m r A
r m N

y t B im t tλ ω
= =−

= + −∑ ∑  (12) 

This is mathematically equivalent to the impulse response of an LTI system with N(2NR + 1) eigenvalues λr 
+ imωA.  The amplitude of each pseudo-mode’s in the response is determined by the magnitude of the 
Fourier coefficient Br,m that defines its residue. 

In light of eq. (12) we see that we can identify the parameters of an LTP system by processing its 
free response using an LTI system identification algorithm, without the lifting procedure.  Equation (12) 
can then be used to interpret the result and/or reconstruct the LTP representation. 

2.2.3. Comparison and Discussion 
The most important distinction between the lifting and the FSE methods is that the former 

represents the system with many additional outputs while the latter is represented as a system with many 
modes (see eq. (12)).  The lifting approach has significant advantages in this regard, because difficulty 
and the potential for ill-conditioning in most system identification (SysID) routines scales with the number 
of poles in the response, whereas a large number of response data sets are readily accommodated.  
Allemang and Brown [47] discuss this issue, describing system identification in terms of the matrix 
polynomials that are employed, the FSE method here corresponds to small matrix polynomials of high 
order while the lifting method corresponds to large matrix polynomials of low order.  Furthermore, the 
frequency-domain responses obtained by the lifting method are easier to interpret – the system’s model 
order is readily apparent. 

Another disadvantage of the FSE method is that if standard LTI system identification routines are 
employed, then one cannot enforce the spacing between the eigenvalues that eq. (12) requires, 
specifically that each λr is accompanied by multiples λr + imωA.  This is an advantage if ωA is not known, 
as one might be able to determine it from a collection of identified eigenvalues.  On the other hand, in 
most applications ωA can be measured and the estimated Floquet exponents most likely will not be 
consistent with the known ωA.  One could perform a sort of averaging to obtain λr and the corresponding 
integer m for each exponent, but this process may be difficult and tedious if the system has many 
exponents or if NR is large [43, 44, 56, 57], especially if any of the contributions at λr + imωA overlap.  On 
the other hand, when the lifting method is employed, standard SysID algorithms can globally [49, 58] 
identify the Floquet exponents of the system utilizing all of the lifting responses simultaneously. 

Despite these limitations, the FSE representation is useful in understanding the bandwidth 
required to acquire measurements and in assessing the fidelity of the measurements and of the resulting 
LTP model.  Also, the FSE representation is needed to reconstruct the time-varying state matrix, as 
discussed in Sections 2.3.  However, when the FSE representation is needed, the author has found it 
much more convenient to use the lifting method to identify a parametric model for the system from the 
measurements and then to expand the time varying residue matrices found by the lifting method into a 
Fourier series. 

2.3. Post-Processing 
The lifting and FSE methods provide a tool for identifying a response model for a system, but in 

some applications one needs to recover the state transition matrix or the time-varying state matrix of the 
LTP system as well.  This section presents a series of post-processing operations that extract these from 
the pole-residue model obtained using the procedure outlined in Section 2.2.  The STM and state matrix 
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are most meaningful if the set of output points is sufficient to define a unique state, so the following 
assumes that this is the case.  If the required conditions are not met, then one can apply the method used 
by Peters and Wang to augment the state vector with measurements from later time steps [21] (see also 
[17-19]), although the interpretation of the STM and state matrix are quite different in that case. 

2.3.1. Reconstructing the State Transition Matrix  
The following assumes that the measured outputs uniquely define the displacement state of the 

system through a known, full-rank, constant matrix E.  Specifically, the state vector of interest is 

 ( ) ( )dx t Ey t=  (13) 

For example, one often has more output measurement locations than states, so an adequate state vector 
can be formed by choosing a subset of the outputs and E is a Boolean matrix. 

If the system is a second-order structural dynamic system, then one can use the derivatives of 
the displacement states to double the size of the state vector, so the final state vector is x(t) = [xd(t)T, 
xv(t)T]T where xv(t) is the time-derivative of xd(t). 

The methods in Section 2.2 identified a parametric model whose parameters (after applying the 
FFT to the lifted residues) are {Bx} = E{By} and λr.  Hence, 

 { } ( )( )
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0,
1

( ) exp ( )
R

R
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d x r Ar m
r m N

x t B im t tλ ω
= =−

= + −∑ ∑ , (14) 

and one can differentiate to obtain the velocity states as follows. 

 { } ( ) ( )( )
2

0,
1

( ) exp ( )
R
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v x r A r Ar m
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= =−
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One must assure that the identified response model is reliable, because the differentiation required could 
amplify errors in the components for large m.  This approach is readily extended to the case where 
acceleration or velocity is measured in lieu of displacement. 

One now has an FSE model for the state response x(t) due to some initial condition x(t0), which is 
known by evaluating the FSE model at t = t0.  Hence, the only unknown in eq. (2) is the state matrix.  
However, there are N2 unknowns in the state matrix at each time step and only one length N response 
due to one length N initial condition.  Fortunately, one can generate the required responses by shifting 
each response by nTA, where n is an integer.  Because the residues are periodic, one can use eqs. (14) 
and (15) to show that x(t+nTA) is equal to x(t) with each term in the summation of the latter multiplied by 
exp(λrnTA). 

We now form the following system of linear equations. 

 ( ) ( ) ( ) ( )( )0 0 0( ) ( 1 ) , 1A Ax t x t N T t t x t x t N T⎡ ⎤⎡ ⎤+ − = Φ + −⎣ ⎦ ⎣ ⎦  (16) 

The matrix multiplying the STM on the right hand side is a constant matrix of initial conditions, which are 
known by evaluating eqs. (14) and (15) at t = [0,TA,…(N-1)TA].  That matrix is denoted [xIC], and after 
solving for the STM and after inserting eqs. (14) and (15) we obtain. 
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r A IC r A
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It is now apparent that one can take 
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and 

 { } ( ) [ ] 1
0( ) 1 expT

r r A ICL t NT xλ −⎡ ⎤= ⎣ ⎦ , (19) 



Allen JCND 2008, Page 7 of 17 

which completes the construction of the state transition matrix.  All of the parameters of the STM in eq. (5) 
were identified from the parametric model provided by the methods in Section 2.2. 

2.3.2. Time-periodic State Matrix 
Once an FSE model for the State Transition Matrix has been identified, one can use the STM 

differential equation, 

 ( )0 0( , ) ( , )d t t A t t t
dt
Φ = Φ  (20) 

to solve for the time varying system matrix A(t) as follows. 

 ( ) 1
0 0( , ) ( , )dA t t t t t

dt
−⎛ ⎞= Φ Φ⎜ ⎟

⎝ ⎠
 (21) 

In the applications that follow, this was accomplished numerically at each time step tk in the 
interval [0,TA).  The derivative of the STM was found by differentiating eq. (17), as was done for the 
response model in eq. (15). 

3. Simulated Application 
The proposed system identification methods were evaluated by applying them to simulated data 

from an LTP system.  The system represents a Jeffcott rotor on an anisotropic shaft, supported by 
anisotropic bearings, as illustrated in Figure 1.  A lumped parameter model is also shown, consisting of a 
point mass suspended by two orthogonal, massless springs with spring constants kRx and kRy.  The 
springs are attached to a massless turntable that turns at constant speed Ω.  The turntable is fixed to 
ground by two massless springs kFx and kFy.  Defining non-dimensional time as nt tω ′=  where 

/n Fxk mω = , the following non-dimensional equations of motion were obtained.  The states are the X 
and Y coordinates in the fixed reference frame, and small displacements of the springs have been 
assumed. 

X

Y          

m

Ω

θ

k Ry

kFy

kFx

k Rx

Y

X

 
Figure 1:  (left) Illustration of a rotor on an anisotropic shaft and anisotropic bearings.  This system 

can be modeled as linear time-periodic. (right) Lumped parameter schematic of the linear time-
periodic system 
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 (22) 

The matrix [I] denotes a two-dimensional identity matrix and Ωt is the turntable angle θ.  The time-
periodic stiffness matrix of the system depends on the ratios of the rotating and fixed spring stiffnesses to 
the stiffness kFx of the fixed spring in the x-direction.  The factor cf controls the strength of the stiffness 
proportional damping in the system. 

The following parameters are used in the following: kRx / kFx = 1, kRy / kFx = 1.5, cf = 0.004, kFy / kFx = 2 
and Ω̂  = 0.5.  The equations of motion are periodic with a period TA = 2π, which corresponds to one half 
of a revolution of the shaft.  The natural frequencies of the system with the shaft held fixed at various 
angles ranged from 0.707 and 0.926 rad/s.  Stability analysis was performed using the method in [3], which 
reveals that the system is unstable for 0.72 < Ω̂  < 0.755, 0.785 < Ω̂  < 0.825 and 0.848 < Ω̂  < 0.92, so it 
would certainly be important to detect and properly characterize this system’s time-periodicity if it is to 
operate at high speeds. 

The response of the system to a unit impulsive force, administered at an angle of 45 degrees 
from the x axis, was found using adaptive time integration, via Matlab’s “ode45” function.  The sample 
increment was chosen to be Δt = 0.126, corresponding to 50 samples per half revolution of the shaft.  The 
response was evaluated over a time window encompassing 512 revolutions of the shaft, which was 
adequate to allow the impulse response to decay to a small fraction of its initial amplitude. 

Measurements were simulated of the displacements of the mass and of the turntable (tt) in the 
fixed frame and in both directions, so the output vector is: y = [X T, Y T, Xtt

T, Ytt
T]T.  The turntable is 

massless, so its displacement is related to that of the mass by a time-varying transformation.  This mimics 
the case where one might measure at multiple points on a flexible system, not knowing a priori how many 
points are required to capture the modes of the system.  The response was contaminated with Gaussian 
white noise whose standard deviation was equal to 2% of the maximum response in each coordinate, to 
simulate a more realistic scenario.  Also, the states corresponding to the velocities of the masses were 
not “measured”; only the four displacements just described were made available in the following. 

3.1. Response Model Identification 
Figure 2 shows the noise contaminated time response of the output y1 = X.  An inset is also 

provided where markers highlight the response points at which the shaft (or turntable) is at either 0 or 180 
degrees, which corresponds to the first lifted response yL

1.  One can see that the lifted response aliases 
the true response frequency. 

The discrete Fourier transform (DFT) of the outputs is shown in the upper panes of Figures 3 and 
4, for X and Y and for Xtt and Ytt respectively.  The response in all of the outputs is dominated by two 
resonance peaks surrounding 0.8 rad/s.  Figure 3 shows two other pairs of peaks at 0.2 and 1.8 rad/s, 
although the latter are almost completely masked by the noise.  In contrast, Figure 4 shows noticeable 
harmonics only at 1.8 rad/s.  In any event, this two-degree of freedom LTP system appears to have at 
least six active modes in this impulse response, as explained by eq. (12).  In that light, one might interpret 
the peaks at 0.2 and 1.8 rad/s as Fourier coefficients of the 0.8 rad/s modes, spaced from those by ωA = 
1.0. 
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Figure 2:  Noise contaminated time response of LTP system.  Inset shows the response over the 
first few cycles.  Circles mark the response points for which the shaft is at an angle of 0 or 180 

degrees. 
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Figure 3: Responses of mass in X and Y.  (top) DFT of time response.  (bottom) DFT of two of the 

lifted responses. 
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Figure 4:  Responses of turntable Xtt and Ytt.  (top) DFT of time response.  (bottom) DFT of two of 

the lifted responses. 

The response was also decomposed according to the lifting method, collecting the samples of the 
response for which the system is at the same angle (i.e. at 0+θ and 180+θ degrees).  The response was 
sampled fifty times per half revolution of the shaft, so the lifting procedure creates in 50 sets of time 
responses for each output.  The DFTs of these lifted responses was found, two of which are shown in the 
bottom pane of Figures 3 and 4.  The 1st and 23rd set of responses are shown corresponding to instants 
when the shaft was at 0° or 180° (1st) and 79.2° or 259.2° (23rd).  Each FFT shows at most two resonant 
peaks, and the amplitude of the peaks is somewhat different in each of the responses shown, and indeed 
differed between all 50 lifted responses as expected. 

The set of 200 lifted responses were processed using the Algorithm of Mode Isolation [51, 59-61], 
which considered all 200 responses simultaneously, automatically identifying both of the modes of the 
system.  The respective residues for each response point-shaft angle combination were also identified by 
AMI, and the algorithm verified that only two modes were present in the response by observing that the 
response was reduced to noise after removing these modal contributions from the data.  This is illustrated 
in Figure 5, which shows a composite of the data, a composite of AMI’s reconstruction of the data and a 
composite of the difference between the two.  A composite is defined as the average magnitude of all of 
the lifted responses in the frequency domain [60].  The reconstruction agrees very well with the data, and 
the difference curve shows that the data appears to contain only noise after the contributions of these two 
modes are removed, confirming that only two modes are active.  The identified Floquet exponents were: 
  (λident)1 = -0.002051 + i*0.1302  
 (λident)2 = -0.002036 + i*0.2594 
The Floquet exponents were also computed numerically using adaptive Runge-Kutta integration to 
compute the STM over the fundamental period, and the following values were obtained, which agree 
quite closely with those shown above. 
 (λanalytical)1 = -0.002000 + i*0.13034  
 (λanalytical)2 = -0.002000 + i*0.25939 
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Figure 5:  (solid, black) Composite of lifted responses, (dash-dot, blue) AMI reconstruction of 

composite and (dashed, green) composite of the difference between the two. 

 
The real and imaginary parts of the residue for the first mode as a function of shaft angle are 

shown in Figure 6.  The shaft angle is related to time by θ = Ω̂ t.  The residues are predominantly 
constant, although they do vary slightly with shaft angle in a sinusoidal manner, and they are somewhat 
jagged, presumably due to the effect of the noise added to the responses.  
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Figure 6:  Residue vector of the first mode identified by AMI algorithm using lifting method.  Only 

the imaginary part of the complex residue is shown. 

3.2. State Transition and System Matrices 
Two modes have been identified from the four responses for this system, so we can now use the 

methods developed in Sections 2.3 to find the STM and time-varying state matrix of the system for a 
subset of the responses that renders the system observable.  The responses X and Y were used to do 
this, so E in eq. (13) is a 2 by 4 matrix with E11=E22=1 and all other elements zero.   The residues identified 
by AMI were converted to an FSE model by applying a DFT.  The top pane in Figure 7 displays the 
absolute value of each of the coefficients of a DFT of the lifted residue for mode 1, coordinate X.  Only 
three terms stand out significantly above the noise for each residue.  All of the other coefficients are 
smaller than the dominant ones, and appear to be on the order of the random fluctuations due to the 
artificially added noise, so they were discarded.  The residue was reconstructed using the three retained 
Fourier coefficients, and its real and imaginary parts are shown as a function of shaft angle in the bottom 
pane.  The reconstructed residue follows the general trend of the identified residue, but is much 
smoother. 
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Figure 7: (top) DFT of X component of the Residue Vector for Mode 1.  Circles show all 50 DFT 

coefficients, points indicate the coefficients that were retained.  (bottom) Plot of residue for mode 1.  
Blue-lines show the real (solid) and imaginary (dashed) parts of the residue found by AMI, Red-

circles show the reconstruction of the real and imaginary parts using only the three dominant 
coefficients in the expansion. 

The retained Fourier coefficients were then used to reconstruct the state transition matrix using 
the procedure described in Section 2.3.  The Fourier Series model for the residue matrices provided the 
{Bx}r.m coefficients required in eq. (18) to define the Floquet mode shapes {ψ(t)}, and the procedure  
described was used to find {Lr(t0)}.  The mode shapes, modal participation factors and corresponding 
Floquet exponents then define the state transition matrix via eq. (12).  The derivative of the STM was also 
found, and the two were evaluated at fifty instants over the fundamental period of the LTP system (i.e. in 
the time interval [0,2π)), and eq. (21) was then used to solve for the system matrix A(t) at each time 
instant. 
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Figure 8:  Sample coefficients of the time varying system matrix A(t).  (solid) Actual coefficient as a 
function of shaft angle, (circles) Coefficient estimated from noise contaminated response data.  The 

curves overlay one another. 

Figure 8 shows three of the coefficients of the state matrix that were estimated using this 
procedure, compared with the actual analytical coefficients.  The A(3,1) A(3,2) and A(3,3) coefficients that 
are shown correspond, respectively, to the negatives of the (1,1) and (1,2) elements of the stiffness matrix 
and the (1,1) element of the damping matrix for this system.  As expected, at θ = 0 the K11 term is equal to 
-0.5 = -(kRx* kFx)/( kRx+ kFx), which is the series stiffness of the system at that angle.  The K12 term is zero 
for θ = 0 and increases to a maximum negative value at 45 degrees.  The identified terms reveal that the 
stiffness matrix is sinusoidal, the dominant terms being the constant term, followed by terms that have 
one period per half revolution of the shaft.  The on-diagonal stiffness in the x-direction is seen to vary 
moderately with shaft angle, fluctuating by about 20%.  The coupling stiffness between x and y is zero at 
0, 90 and 180 degrees and reaches a peak value of just under 20% of the on-diagonal x-direction 
stiffness at 45 and 135 degrees.  The (1,1) element of the damping matrix is much smaller than the 
stiffness terms and appears to be constant.  It is significant to note that this system matrix was estimated 
without a priori knowledge of either its order nor of the form of its time-varying functions. 

All three of the coefficients were accurately estimated using the proposed procedure.  The 
maximum error in any coefficient of A(t) over all shaft angles was 0.013, corresponding to an off-diagonal 
term in the damping matrix.  This corresponds to 1.3% error since the largest coefficient in A(t) is one.  
However, the terms in the portion of A(t) corresponding to the damping matrix are small, so the errors in 
those terms are almost 100% of their actual maximum values.  The same procedure was also repeated 
with Xtt and Ytt selected as the states.  Once again three Fourier coefficients were sufficient to describe 
the identified residues.  The A(t) matrix estimated in that case was compared with that derived for the 
system, and the largest error found was 3.1% in the coupling stiffness between Xtt and Ytt. 

3.3. Discussion 
This paper has simulated an actual experiment by adding a considerable level of noise to the 

response of an LTP system.  The noise masks all but a few of the peaks in the spectrum shown in the top 
pane in Figure 3.  The difficulties associated with using the FSE method in this case have been 
discussed.  When the lifting method is used, as in the example presented here, measurement noise 
makes the residues of the state transition matrix more jagged than they would otherwise be.  While these 
residues can be used to accurately reconstruct the response, one does encounter difficulty when using 
them to reconstruct the time varying state matrix A(t).  The identified models must be differentiated in this 
process (see eq. (20)), which can amplify small high-frequency errors in the model. 

This difficulty was overcome in this example by eliminating all of the Fourier coefficients that did 
not stand out above the noise floor.  For this system, the A(t) matrix was accurately estimated using 
either: 1) the three dominant Fourier coefficients (which created Figure 8), 2) the four dominant 
coefficients, or 3) all of the coefficients for which -2 ≤ m ≤ 2.  However, when all of the coefficients in the 
Fourier series expansion for which -3 ≤ m ≤ 3 are retained, the maximum error in A(t) increases to 6.2% 
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and the estimate of the state matrix shows artificial waviness with three cycles per period.  This suggests 
that the m = ± 3 coefficients are larger than they should be due to the noise, and that their effect is 
amplified when finding A(t).  A Fourier series expansion of the analytical residues was created to confirm 
this, revealing that the FSE coefficients of the analytical residues decrease as about 10-m, so the actual 
m=±3 coefficients were well below the noise.  If these coefficients were thought to be meaningful, one 
must design the experiment such that they stand out above the noise.  Otherwise, they should be filtered 
from the response by truncating the Fourier series expansion so that they do not contribute adversely to 
the estimation of the time varying state matrix. 

4. Conclusions 
A methodology was presented by which one can identify a response model, the time varying state 

matrix and the state transition matrix of a linear time-periodic system from free response data.  A series of 
pre- and post-processing steps were presented so that virtually any system identification algorithm for 
multi-output time-invariant systems can be used, and some guidelines were presented to aide in selecting 
an algorithm. 

The proposed approach was demonstrated using synthesized, noise contaminated response data 
from a Jeffcott rotor on an anisotropic shaft, supported by an anisotropic foundation.  The proposed lifting 
method was found to simplify the process of identifying the Floquet exponents of the LTP system and its 
model order; a standard system identification routine for LTI systems was able to automatically identify 
the modes in the response and the model order.  This revealed that a subset of the measurement points 
was sufficient to describe the displacement state of the system.  Two subsets of the measurement points 
were used to find the system’s state transition matrix Φ(t,t0) and its time-periodic system matrix A(t), and 
in both cases each term in the system matrix was estimated within a few percent, even though the 
responses used to find them were contaminated with substantial noise.  However, the procedure was 
shown to be sensitive to the Fourier Coefficients of the LTP modes corresponding to large m, so spurious 
coefficients had to be filtered from the response model to accurately reconstruct the state matrix.  Failing 
to do so contaminated the reconstructed system matrix, although the response model does still faithfully 
reproduce that portion of the response that stands out above the measurement noise. 

These methods could be applied to solve a variety of system identification problems.  Efforts are 
already underway to use them to identify the mode shapes of structures from continuous-scan laser 
vibrometer measurements [43, 44].  They can also be applied to detect asymmetry (e.g. due to a crack) in 
the shaft of a rotor-bearing system [41], to experimentally derive models for complex rotating machines 
such as wind turbines, helicopters or tires, and to validate analysis models of LTP systems. 
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