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ABSTRACT 
 
A variety of systems can be faithfully modeled as linear with coefficients that vary periodically with 

time or Linear Time-Periodic (LTP).  Examples include anisotropic rotor-bearing systems, wind turbines 
and nonlinear systems linearized about a periodic trajectory.  Many of these have been treated 
analytically in the literature, yet few methods exist for experimentally characterizing LTP systems.  This 
paper presents a set of tools that can be used to identify a parametric model of an LTP system, using a 
frequency domain approach and employing existing algorithms to perform parameter identification.  One 
of the approaches is based on lifting the response to obtain an equivalent Linear Time-Invariant (LTI) 
form and the other based on Fourier series expansion.  The development focuses on the pre-processing 
steps needed to apply LTI identification to the measurements, the post-processing needed to reconstruct 
the LTP model from the identification results, and the interpretation of the measurements.  This elucidates 
the similarities between LTP and LTI identification, allowing the experimentalist to transfer insight 
between the two.  The approach determines the model order of the system, and post processing reveals 
the shapes of the time-periodic functions comprising the LTP model.  Further post-processing is also 
presented that allows one to generate the state transition and time-varying state matrices of the system 
from output of the LTI identification routine so long as the measurement set is adequate.  The 
experimental techniques are demonstrated on simulated measurements from a Jeffcott rotor mounted on 
an anisotropic, flexible shaft, supported by anisotropic bearings. 

1. INTRODUCTION 
Many important dynamic systems can be modeled as Linear Time-Periodic (LTP), and it is 

exceedingly important to discover and accurately model this character since it can lead to parametric 
resonances which are not present for a Linear Time-Invariant (LTI) approximation to the system.  Floquet 
initiated the study of LTP systems in the 1800’s [1], and Floquet theory has been applied to a variety of 
mechanical systems such as helicopters and wind turbines.  Linear time-periodic systems are also 
frequently encountered when a nonlinear system is linearized about a periodic trajectory. 

Much progress has been made towards analysis and control of time-periodic systems, yet 
experimental identification of LTP systems has received relatively little attention.  Many texts cover 
system identification approaches for general time-varying systems, but most of those are not appropriate 
for LTP systems with rapidly varying parameters.  Two early works that overcome these limitations are 
the subspace methods of Hench [2] and Verhaegen and Yu [3, 4].  Liu presented a similar method in [5] 
(also see [6]) that is applicable to LTP systems. Peters and Wang [7] independently arrived at a related 
methodology, and applied their technique to find the Floquet multipliers of a laboratory helicopter rotor [8].  
All of these are time-domain methods and focus on the discrete-time representation for an LTP system, 
and none proposes how one might recover the continuous-time system matrices from the discrete-time 
model that they identify, yet this is of interest in many applications. 

In many instances frequency domain approaches are preferred [9].  Werely and Hall developed 
the concept of harmonic transfer functions (HTF) to treat LTP systems in the frequency domain [10, 11], 
and their methods were recently applied to measurements from a wind tunnel model of a helicopter rotor 
[12], although no meaningful time-periodic behavior could be detected.  A number of other methods also 
exist that are applicable to both nonlinear and LTP systems, although most are limited to single-degree of 
freedom or low order systems [13]. 
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This work presents a frequency-domain approach that allows one to characterize an LTP system 
using the same methodology, algorithms and intuition that are used for LTI systems.  The focus is on 
developing the pre- and post-processing needed so that any suitable LTI identification routine can be 
used to process free response measurements from an LTP system.  Particular emphasis is placed on 
finding the proper model order and on correctly distinguishing time-periodic behavior from noise, signal 
processing errors, and other factors that are common to experimental measurements.  The model order is 
identified by interrogating the response data, as is done for LTI systems, and nothing is assumed about 
the model form except that it is linear and time-periodic.  When the fundamental period of the system is 
known, a lifting scheme [3, 14] is used to transform the measurements into a set of responses that can be 
described by an LTI model.  A Fourier series description is also developed that can, in principle, be used 
to address the case where the fundamental period is not known, and which is the converse of the HTF 
approach.  This work also shows how one can estimate the STM and the time-varying state matrix of the 
system if an adequate set of responses has been collected.  These methods have recently been applied 
to identify LTI structural modes from continuous-scan laser vibrometer measurements [15-18], where the 
LTP response has many modes with complicated time-periodic patterns, so the aforementioned features 
have proved highly beneficial. 

2. Theoretical Development 
The following section briefly reviews some pertinent concepts from Floquet Theory.  Section 2.2 

presents two descriptions that can be used to identify parametric models of LTP systems using LTI 
methods, and Section 2.3 describes how to reconstruct the LTP state transition matrix and state matrix 
from the parametric model. 

2.1. Review of Floquet Theory for LTP Systems 
The response of a linear time-varying system 
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y C t x

=

=
 (1) 

where x is the N×1 system state vector, y the No×1 vector of outputs and the matrices A(t) and C(t) are 
periodic with period TA, (e.g. A(t + TA) = A(t)), is related to its initial state x(t0) at time t0 by its state 
transition matrix 

 )(),()( 00 txtttx Φ= . (2) 

Floquet’s theorem [19] states that if the state transition matrix is diagonalizable, then it can be 
decomposed as follows, 

 ( ) 1
0 0 0( , ) ( ) exp ( ) ( )Rt t t t t t −Φ = Ψ Λ − Ψ  (3) 

where Ψ(t)=[{ψ1}, …, {ψN}] is the periodic modal matrix of the STM and ΛR is a diagonal matrix containing 
the Floquet exponents of the system.  The Floquet multipliers μr are related to the Floquet exponents λr 
by μr = exp(λrTA), but the latter can be determined from μr only up to an arbitrary integer n, 
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where ωA = 2π/TA.  This is of little consequence because one can correctly reconstruct the STM in eq. (3) 
with any n, and likewise all of the following is valid for any n.  However, as the strength of the systems 
time periodicity decreases, the mode vectors {ψr(t)} reduce to constant vectors only for a specific n. 

The response of the system, after expressing eq. (3) in summation form, is given by 
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where ( )Y rR t  is the periodic residue vector of the observed response and { }0( ) T
rL t is the rth row of 

Ψ(t0)-1. 

2.2. Identifying Parametric Models for LTP Systems 

2.2.1. Lifting Approach 
Consider the response in eq. (5), sampled an integer number P times per fundamental period and 

over an integer number of cycles Nc= Ns/P.  The periodicity of RY(t)r is not observed if one always samples 
at the same point within the fundamental period, and so the response is a superposition of exponentials 
with constant amplitudes.  This idea has been used for analysis [4, 20, 21], where it was called “lifting.”  
The lifted response is 

 0 1 1[ , , , ]L T T T T
Py y y y −= , (6) 

where yk is the response at the time instants tn for n=k+mP for k = 0…P-1 and m = 0…Nc-1. 
The free response of the lifted system has the following form 
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where the kth block of RLd
r is 

 ( ), 0( ) exp ( ) 0... 1Ld
k r Y k r r kR R t t t k Pλ= − = − . (8) 

The exponential term is important because it accounts for the delay between t0 and the beginning of each 
response yk.  For convenience, we also define RL

r which is identical to RLd
r but without the exponential 

term, and so is the lifted form of RY(t)r.  Equation (7) has the same form as the response of an LTI system, 
so LTI parameter identification routines can be applied either to yL(t) or to its frequency domain dual. 
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In either case, an LTI algorithm can be used to extract RLd
r and λr from the responses. One can then 

estimate RL
r by multiplying each block of RLd

r by exp(-λr(tk-t0)). Note that this multiplication involves the 
identified Floquet exponents, whose imaginary part contains an arbitrary integer multiple of ωA.  Hence, 
the estimated RL

r should always be periodic, but the Fourier series expansion of RL
r may be shifted by an 

arbitrary integer. 
By analogy with LTI systems, measurements from Ni different initial conditions can be considered 

to form an No×Ni matrix of responses at each frequency, in which case it follows from the definition of RLd
r 

that the resulting residue matrices are rank-one, each column being proportional to the mode vectors 
C(tk){ψr(tk)}, just as for an LTI system.  Hence, concepts such as the Mode Indicator Function [22] and 
MIMO identification, which are important tools for detecting close natural frequencies [22], are directly 
applicable.  If P is large, then there will be a large number of outputs and one should seek an algorithm 
that can efficiently handle them; this work uses the Algorithm of Mode Isolation (AMI) [23], which 
considers all of the responses simultaneously to obtain the best global estimate of the Floquet exponents. 
 One important difference between identification of the lifted LTP system and standard LTI 
identification is that the bandwidth of YL(ω) is limited to half of ωA, which may alias the lifted response.  In 
that case, one can account for the aliasing using the sampled (star *) Laplace transformation [14], which 
is equivalent to fitting the response to a model with Z-domain polynomials (e.g. replace  iω in eq. (9) with 

exp( )Az i Tω= ).  However, the distinction is usually not important for lightly damped structures if the 
Floquet exponents are not too close to 0 or ωA/2. 

2.2.2. Fourier Series Expansion (FSE) Method 
Because the residues ( )Y rR t  in eq. (5) are periodic, they can be readily expanded in a Fourier 

series.  Here we shall presume that they can be adequately represented using a fixed number (2*NR + 1) 
of terms so that the response may be written as 
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where Br,m is the mth complex Fourier coefficient of the rth residue.  Factoring out the summations reveals 
the nature of the response, 
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which is equivalent to that of an LTI system with N(2NR + 1) eigenvalues λr + imωA.  The amplitude of each 
pseudo-mode in the response is determined by the Fourier coefficient Br,m that defines its residue.  In light 
of eq. (11) one can identify the parameters of an LTP system by processing its free response directly 
using an LTI system identification algorithm; that equation then allows one to interpret the result and 
reconstruct the LTP representation. 

2.2.3. Comparison and Discussion 
The most important distinction between these two approaches is that the lifting method 

represents the response with many additional outputs while the FSE method uses many modes.  The 
lifting approach is advantageous in this regard because difficulty and the potential for ill-conditioning in 
most system identification routines scales with the number of poles in the response, while response 
points are easy to accommodate [22].  Furthermore, the responses obtained by the lifting method are 
easier to interpret – the system’s model order is readily apparent.  Furthermore, the FSE method requires 
a customized approach because standard LTI system identification routines do not enforce the spacing 
between the eigenvalues that eq. (11) requires.  This is an advantage if ωA is not known, as one might be 
able to determine it from a collection of identified eigenvalues.  On the other hand, when ωA is known the 
lifting method allows one to globally [22] identify the Floquet exponents of the system utilizing all of the 
responses simultaneously, and one can always find an equivalent FSE representation by applying a DFT 
to RL

r. 

2.3. Post-Processing 
This section presents the post-processing operations that extract the state transition matrix or the 

time-varying state matrix from the parameters Br,m and λr identified using the procedure just outlined.  The 
STM and state matrix are most meaningful if the set of output points is sufficient to define a unique state, 
so the following assumes that this is the case.  If that condition is not met, then one can augment the 
state vector with measurements from later time steps as done in [7]. 

2.3.1. Reconstructing the State Transition Matrix  
The following assumes that the measured outputs uniquely define the displacement state of the 

system through a known, full-rank, constant matrix E via 

 ( ) ( )dx t Ey t= , (12) 

so one must have more output measurement locations than states.  Once the model order is identified, an 
adequate state vector can be formed by choosing a subset of the outputs and E is a Boolean matrix. 

If the system is a second-order structural dynamic system, then one can use the derivatives of 
the displacement states to double the size of the state vector, so the final state vector is x(t) = [xd(t)T, 
dxd(t)/dtT]T. 

In terms of the state vector just defined the residues are (Bx)r,m = EBr,m, so 
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and one can differentiate to obtain the velocity states as follows. 
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One must assure that the identified response model is reliable, because the differentiation required could 
amplify errors in the components for large m, but this can be avoided if acceleration or velocity is 
measured in lieu of displacement. 

One now has an FSE model for the state response x(t) due to some initial condition x(t0), which is 
known by evaluating the FSE model at t = t0.  Hence, the only unknown in eq. (2) is the state matrix.  
However, there are N2 unknowns in the state matrix at each time step and only one length N response 
due to one length N initial condition.  Fortunately, one can generate the required responses by shifting 
each response by nTA, where n is an integer.  Because the residues are periodic, x(t+nTA) is equal to x(t) 
with each term in the summation of the latter multiplied by exp(λrnTA), so we can form the following system 
of linear equations. 

 ( ) ( ) ( ) ( )( )0 0 0( ) ( 1 ) , 1A Ax t x t N T t t x t x t N T⎡ ⎤⎡ ⎤+ − = Φ + −⎣ ⎦ ⎣ ⎦  (15) 

The matrix multiplying the STM on the far right is a known constant matrix of initial conditions, which is 
denoted [xIC], and after solving for the STM and after inserting eqs. (13) and (14) we obtain. 
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It is now apparent that one can take 
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and 

 { } ( ) [ ] 1
0( ) 1 expT

r r A ICL t NT xλ −⎡ ⎤= ⎣ ⎦ , (18) 

which completes the construction of the state transition matrix. 

2.3.2. Time-periodic State Matrix 
Once an FSE model for the State Transition Matrix has been identified, one can use the STM 

differential equation, 

 ( )0 0( , ) ( , )d t t A t t t
dt
Φ = Φ  (19) 

to solve for the time varying system matrix A(t) as follows. 

 ( ) 1
0 0( , ) ( , )dA t t t t t

dt
−⎛ ⎞= Φ Φ⎜ ⎟

⎝ ⎠
 (20) 

In the applications that follow, this was accomplished numerically at each time step tk in the 
interval [0,TA).  The derivative of the STM was found by differentiating eq. (16), as was done for the 
response model in eq. (14). 

3. Simulated Application 
The proposed system identification methods were evaluated by applying them to simulated 
measurements from an LTP system representing a Jeffcott rotor on an anisotropic shaft (Figure 1).  A 
lumped parameter model is also shown, consisting of a point mass suspended by two orthogonal, 
massless springs with spring constants kRx and kRy.  The springs are attached to a massless turntable that 
turns at constant speed Ω.  The turntable is fixed to ground by two massless springs kFx and kFy.  Defining 
non-dimensional time as nt tω ′= , where /n Fxk mω = , the following equations of motion were 
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obtained in the fixed reference frame. 
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 (21) 
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Figure 1:  (left) Illustration of a rotor on an anisotropic shaft and anisotropic bearings. (right) 

Lumped parameter schematic of the LTP system 

The following parameters are used in the following: kRx / kFx = 1, kRy / kFx = 1.5, cf = 0.004, kFy / kFx = 2 
and Ω̂  = 0.5.  The equations of motion are periodic with a period TA = 2π, which corresponds to one half 
of a revolution of the shaft.  The natural frequencies of the system with the shaft held fixed at various 
angles ranged from 0.707 and 0.926 rad/s.  Stability analysis was performed using the method in [24], 
which reveals that the system is unstable for 0.72 < Ω̂  < 0.755, 0.785 < Ω̂  < 0.825 and 0.848 < Ω̂  < 0.92, so 
it would certainly be important to detect and properly characterize this system’s time-periodicity if it is to 
operate at high speeds. 

The response of the system to a unit impulsive force was found using adaptive time integration 
with Δt = 0.126, (50 samples per half revolution of the shaft), and for 512 revolutions so that the response 
decayed to a small fraction of its initial amplitude. 

Measurements were simulated of the displacements of the mass and of the turntable (tt) in the 
fixed frame and in both directions, so the output vector is: y = [X T, Y T, Xtt

T, Ytt
T]T.  The turntable is 

massless, so its displacement is related to that of the mass by a time-varying transformation.  This mimics 
the case where one might measure at multiple points on a flexible system, not knowing a priori how many 
points are required to capture the modes of the system.  The response was contaminated with Gaussian 
white noise whose standard deviation was equal to 2% of the maximum response in each coordinate, to 
simulate a more realistic scenario. 
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3.1. Response Model Identification 
Figure 2 shows the noise contaminated time response of the output y1 = X and markers highlight 

the response points at which the shaft (or turntable) is at either 0 or 180 degrees, which corresponds to 
the first lifted response yL

1, showing that the lifted response aliases the true response frequency. 
The discrete Fourier transform (DFT) of the outputs is shown in the upper panes of Figures 3 and 

4, for X and Y and for Xtt and Ytt respectively.  The response in all of the outputs is dominated by two 
resonance peaks surrounding 0.8 rad/s.  Figure 3 shows two other pairs of peaks at 0.2 and 1.8 rad/s, 
although the latter are almost completely masked by the noise.  In contrast, Figure 4 shows noticeable 
harmonics only at 1.8 rad/s.  In any event, this two-degree of freedom LTP system appears to have at 
least six active modes in this response, as explained by eq. (11). 
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Figure 2:  Noise contaminated time response of LTP system with circles shwoing the first lifted 

response yL
1. 
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Figure 3: Responses of mass in X and Y.  (top) DFT of time response.  (bottom) DFT of two of the 

lifted responses. 
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Figure 4:  Responses of turntable Xtt and Ytt.  (top) DFT of time response.  (bottom) DFT of two of 

the lifted responses. 

The response was also decomposed according to the lifting method, and the DFT of the lifted 
responses was found, two of which are shown in the bottom panes of Figures 3 and 4.  The 1st and 23rd 
responses are shown corresponding to instants when the shaft was at 0° or 180° (1st) and 79.2° or 259.2° 
(23rd).  Each FFT shows at most two resonant peaks, and the amplitude of the peaks is somewhat 
different in each of the responses shown, and indeed differed between all 50 lifted responses as 
expected. 

The set of 200 lifted responses were processed using the Algorithm of Mode Isolation [23], which 
considered all 200 responses simultaneously, automatically identifying both of the modes of the system, 
their residues, and the algorithm automatically determined the model order by observing that the 
response was reduced to noise after removing these modal contributions from the data.  The identified 
Floquet exponents were: 
  (λident)1 = -0.002051 + i*0.1302  
 (λident)2 = -0.002036 + i*0.2594 
The Floquet exponents were also computed numerically [24], and the following values were obtained, 
which agree quite closely with those shown above. 
 (λanalytical)1 = -0.002000 + i*0.13034  
 (λanalytical)2 = -0.002000 + i*0.25939 

3.2. State Transition and System Matrices 
Two modes have been identified from the four responses for this system, so we can use the 

methods in Sections 2.3 to find the STM and time-varying state matrix of the system for a subset of the 
responses.  The responses X and Y were used to do this, so E in eq. (12) is a 2 by 4 matrix with E11=E22=1 
and all other elements zero.   The residues identified by AMI were converted to an FSE model by 
applying a DFT, and the top pane in Figure 5 displays the absolute value of each of the coefficients of a 
DFT of the lifted residue for mode 1, coordinate X.  Only three terms stand out significantly above the 
noise for this, and all of the other residues.  The other coefficients are on the order of the random 
fluctuations due to the artificially added noise, so they were discarded.  The residue was reconstructed 
using the three retained Fourier coefficients, and its real and imaginary parts are shown as a function of 
shaft angle in the bottom pane, revealing that it follows the general trend of the identified residue but is 
much smoother. 
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Figure 5: (top) DFT of X component of the Residue Vector for Mode 1.  Circles show all 50 DFT 

coefficients, points indicate the coefficients that were retained.  (bottom) Plot of residue for mode 1.  
Blue-lines show the real (solid) and imaginary (dashed) parts of the residue found by AMI, Red-
circles show the reconstruction of the real and imaginary parts using the indicated coefficients. 

The retained Fourier coefficients were then used to reconstruct the state transition matrix, the 
(Bx)r.m coefficients defining the Floquet mode shapes {ψ(t)}, and the procedure described was used to find 
{Lr(t0)}, completing the model for the STM.  The derivative of the STM was also found, both were 
evaluated at fifty time instants over the fundamental period, and eq. (20) was then used to solve for A(t) at 
each time instant. 
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Figure 6:  Sample coefficients of the time varying system matrix A(t).  (solid) Actual coefficient as a 

function of shaft angle, (circles) Coefficient estimated from noise contaminated response data. 
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Figure 6 shows three of the coefficients of the state matrix that were estimated using this 
procedure, compared with the actual analytical coefficients.  The A(3,1) A(3,2) and A(3,3) coefficients that 
are shown correspond, respectively, to the negatives of the (1,1) and (1,2) elements of the stiffness matrix 
and the (1,1) element of the damping matrix for this system.  As expected, at θ = 0 the K11 term is equal to 
-0.5 = -(kRx* kFx)/( kRx+ kFx), which is the series stiffness of the system at that angle.  The K12 term is zero 
for θ = 0 and increases to a maximum negative value at 45 degrees.  The identified terms reveal that the 
stiffness matrix is sinusoidal, the dominant terms being the constant term, followed by terms that have 
one period per half revolution of the shaft.  The (1,1) element of the damping matrix is much smaller than 
the stiffness terms.  It is significant to note that this system matrix was estimated without a priori 
knowledge of either they system order nor of the form of its time-varying functions. 

All three of the coefficients were accurately estimated using the proposed procedure.  The 
maximum error in any coefficient of A(t) over all shaft angles was 0.013.  This corresponds to 1.3% error 
since the largest coefficient in A(t) is one.  However, the terms in the portion of A(t) corresponding to the 
damping matrix are small, so the errors in those terms are almost 100% of their actual maximum values.  
The same procedure was also repeated with Xtt and Ytt selected as the states.  Once again three Fourier 
coefficients were sufficient to describe the identified residues.  The A(t) matrix estimated in that case was 
compared with that derived for the system, and the largest error found was 3.1% in the coupling stiffness 
between Xtt and Ytt. 

3.3. Discussion 
This paper has simulated an actual experiment using simulated noise, which masks all but a few 

of the peaks in the spectrum shown in the top pane in Figures 3 and 4.  When the lifting method is used, 
measurement noise makes the residues of the state transition matrix more jagged than they would 
otherwise be.  While these residues can be used to accurately reconstruct the response, one does 
encounter difficulty when using them to reconstruct the time varying state matrix A(t) due to the 
differentiation required.  This difficulty was overcome by eliminating all of the Fourier coefficients that did 
not stand out above the noise floor.  For this system, the A(t) matrix was accurately estimated using 
various collections of the identified Fourier coefficients (the three dominant ones were used to create 
Figure 6), although the error in A(t) increased if too many were used.  For example, if all coefficients for -3 
≤ m ≤ 3 were retained, the maximum error in A(t) increased to 6.2% and the estimate of the state matrix 
showed artificial waviness.  In general, one must design the experiment such that all important Fourier 
coefficients stand out above the noise, or an artificially smooth A(t) might be obtained. 

4. Conclusions 
A methodology was presented by which one can identify a response model, the time varying state 

matrix and the state transition matrix of a linear time-periodic system from free response data.  A series of 
pre- and post-processing steps were presented so that virtually any system identification algorithm for 
multi-output LTI systems can be used, and some guidelines were presented to aide in selecting an 
algorithm.  The proposed approach was demonstrated using synthesized, noise contaminated response 
data, and the proposed lifting method was found to simplify the process of identifying the Floquet 
exponents of the LTP system and its model order; a standard system identification routine for LTI systems 
was able to automatically identify the modes in the response and the model order.  This revealed that a 
subset of the measurement points was sufficient to describe the displacement state of the system, and 
two different subsets of the measurement points were used to find the system’s state transition matrix 
Φ(t,t0) and its time-periodic system matrix A(t).  Each term in the system matrix was estimated within a 
few percent in both cases, in spite of the measurement noise. 
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