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ABSTRACT

The latest modifications of the Algorithm of Mode Isolation (AMI) for identification of
modal properties from frequency response data are tested with synthetic data derived from an
analytical model of an elastic frame in which flexure and torsion are coupled. The parameters
of this model are selected to cause the occurrence of localized modal patterns in two modes
having close natural frequencies. The response data is contaminated with white noise at
a level sufficient to almost mask the two close modes. Results for the real and imaginary
part of the eigenvalues are tabulated. The analytical modal patterns of displacement and
torsional rotation are depicted graphically, accompanied by the discrete values obtained from
AMI. Excellent agreement is found to occur for each mode, other than one of the pair of close
modes. The poorer quality of that mode’s identified properties is shown to be a consequence
of its localized modal pattern. Results for the eigenvalues obtained by the rational fraction
polynomial algorithm, which is an alternative modal identification technique, are found to

be substantially less accurate as a consequence of difficulty in the presence of noise.



I. INTRODUCTION

Part I' described an iterative procedure that extracts the modal properties of a vibratory
system from measured frequency response data. The procedure is called the Algorithm of
Mode Isolation (AMI) because its primary feature entails isolating a single mode’s contribu-
tion to each FRF. The first effort? was founded on a classical undamped modal representation
of an FRF. A formulation fitting FRFs to a damped modal description was described sub-
sequently®% The new features of AMI developed in Part I were its implementation of linear
least squares for all aspects of parameter identification. The present paper examines AMI’s
performance under conditions where modal identification is known to encounter difficulty.

One faces a philosophical dilemma in deciding how to assess any algorithm for experi-
mental modal analysis. Response data can be derived from an analytical model and then
contaminated by a standard noise model. Using such data as the input to the algorithm
leaves no ambiguity as to what the modal parameters should be, for they are available from
the analytical model. However, such a line of investigation does not address how the algo-
rithm would perform when applied to actual measured response data, where the noise might
not fit a standard model, and where non-random errors may be present. The problem with
using actual measured data is that there is no way of knowing exactly what the actual modal
properties are, because ideal features, such as a clamped end condition for a beam, cannot
be reproduced exactly, and prediction of dissipation effects from first principles is beyond
present capabilities for built-up systems. It is for this reason that the present effort uses
synthetic data derived from an analytical model.

Any modal analysis algorithm can be expected to have the most difficulty in systems that



have close natural frequencies, weakly excited modes, and low signal-to-noise ratios in their
measured data. Prior works have used relatively simple systems to examine the accuracy of
AMI in the presence of these problematic features. The initial effort? used data derived from
a four-degree-of-freedom system with substantial non-proportional damping. That system
had previously been used by Roemer and Mook® to test a modification of Juang and Suzuki’s
frequency domain eigenvalue realization algorithm®.

The next model used to test AMI was a cantilevered beam with three suspended spring-
mass-dashpot systems®% This system was a simplified version of one used by Strasberg and
Feit” to examine energy transfer between structural components. In addition to permitting
exploration of the role of noise, the small size of the suspended masses caused two modes
to have natural frequencies that were closer than their bandwidths. This led to modal
coupling, which refers to the merger in an FRF of resonance peaks that otherwise would
be distinct. The small size of the suspended masses also led to a pair of modes that are
weakly excited, and therefore readily masked by noise. (In fact, as will be evident here,
high damping, close natural frequencies, and high noise levels mingle in their effect.) One
consequence of tuning the subsystems to give the desired modal properties was that the
first four modes were well separated from the high-frequency modes, which substantially
simplfied the identification task. The performance of AMI for this model was assessed solely
by comparing its predictions to the analytical modal properties. It was found that AMI
worked well at identifying the natural frequencies and modal damping ratios, even in the
presence of substantial additive white noise. However, it was found that some normalized

mode vectors could not be found because they were weakly excited.



The need to improve the identification of weakly excited modes led to Zaki’s modification
of AMI®, in which identification of the normal mode coefficients was deferred until the
natural frequencies and modal damping ratios had been determined. The data he used
to test this reformulation was synthesized from an analytical model of a frame composed
of two orthogonally welded cantilevered beams loaded out-of-plane, which couples flexure
and torsion. One reason for using this model is that many modes are required to describe
its response. Also, the system parameters were adjusted such that mode coupling occurred.
Various levels of white noise were added to test the limits of AMI, but the sole assessment
criterion for AMI’s performance was how well it identified the analytical modal properties.

The exposition in Part I incorporated Zaki’s modification, as well as a linear least squares
routine for extracting the eigenvalues from the FRF data. The objective here is to assess
the performance of this latest version of AMI. The data to be analyzed is obtained from
Zaki’s elastic frame model. An additional measure beyond comparison with the analytical
modal properties will be a comparison of AMI’s values to those obtained by the Rational
Fraction Algorithm first proposed by Richardson and Formenti?, and then modified by many
investigators, as detailed by Formenti and Richardson!® in order to improve the algorithm’s
numerical stability and accuracy.

The frame structure presented here is the same as that used by Zaki, who formulated the
system equations using Ritz series. However, further examination of that analysis revealed
that the series diverged because of a poor choice of the Ritz basis functions. The model
development presented here corrects this. However, it should be noted that after Zaki reduced

the model to a finite number of degrees of freedom, all subsequent work depended only on



that reduced order model. Consequently, the modal identification was consistent with the
erroneous analytical modal properties, and Zaki’s findings regarding AMI were consistent.
The frame’s parameters in the present work are adjusted such that two modes have close
natural frequencies, and sufficient damping is introduced to cause modal coupling. Further-
more, these close modes display patterns of displacement and rotation that are localized to
one span, and the degree to which flexure and torsion are coupled generally varies strongly

between modes. Hence, there is a large variation in FRF magnitudes at various peaks.

II. ELASTIC FRAME PROTOTYPE

The parameters of an exercise offered by Ginsberg!'! are adjusted to obtain a system in
which a pair of modes are coupled. It consists of two cantilevered beams that are oriented
orthogonally and welded at their free ends, as depicted in Figure 1. Their junction has the
effect of coupling the out-of-plane flexural displacement w and torsional rotation 6. Each
beam has a solid circular cross section with 100 mm radius, modulus of elasticity E = 70x 10°
Pa, modulus of rigidity G = 26.32 x 10° Pa, and 2700 kg/m? density. The span lengths are
set at L1 =4 m, Ly = 3.85 m. Two transverse dampers, ¢; = ¢o = 155.88 N-s/m, oriented
out-of-plane are placed at 1 = 4 m and zo = 3 m. In addition, two torsional dampers,
c3 = ¢4 = 77.94 N-s-m/rad, are placed at x; = 5 = 1 m.

The span lengths were selected because they lead to two modes having close natural
frequencies and modal patterns that are localized to one span, as will be seen. This occurs
because Ly = L; gives a symmetric system, so that setting L, slightly different from L, repre-

sents a small deviation from symmetry of a system consisting of weakly coupled components.



1,2 one cause of mode localization is weak coupling

As described by Pierre, Tang, and Dowel
between two energy depositories that deviate slightly from perfect symmetry. In the present
system, the energy depositiories are the individual spans, and the coupling is provided by
their welded connection. (An evaluation of the natural frequencies as a function of L; with
Ly + Ly held fixed would show veering of the eigenvalue loci, which often accompanies mode
localization, as shown by Chen and Ginsberg.!®) Because the modes having close natural
frequencies also have regions of low modal response, the selected values of L; and Lo lead to
a strong test of AMI’s capabilities.

To construct an analytical model of the system the transverse deflection and torsional

rotation of each beam are represented by Ritz series, with the associated Ritz coefficients

serving as generalized coordinates for the system. The expansions for beam n = 1 or 2 are

given by
Ng
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A similar model was constructed by Zaki® using monomial functions, but they lead to nu-
merical problems due to ill-conditioning when the series length is increased beyond Np = 5.
For that reason, the eigenfunctions of a clamped-free beam are used as the basis functions

for both beams. These are
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(\ng)j — sin [W} (3)
The response data presented here were obtained by truncating each series at Np = 11.
Bernoulli-Euler beam theory gives functionals describing the kinetic and strain energy in
terms of w and €, while the Rayleigh dissipation function depends on w and # at the dashpot
locations. Substitution of eqs. (1) into those expressions yields quadratic sums in the
generalized coordinates or velocities. A similar operation applied to the virtual work yields
the generalized forces. Lagrange’s equations then leads to a set of 4Ny ordinary differential
equations for the Ritz series coefficients.

The Lagrange equations do not couple the motion of the two beams. That effect is

described by constraint conditions enforcing continuity of transverse displacement, and of

rotation about the axis of each beam. It is required that

w(zy = L) = w(zy = Lo)

ow =0, _, (4)
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Substitution of the Ritz series into the preceding leads to three algebraic constraint equations
that supplement the 4 N Lagrange equations. The unknowns are the Ritz series coefficients
and three Lagrange multipliers. An elimination process based on solving the constraint
equations for three generalized coordinates reduces the system to a set of 4Ny — 3 differential
equations. These equations may be solved through a state-space formulation for 8Ny — 6
eigenvalues. Heavy damping would lead to overdamped modes marked by pairs of real
eigenvalues. The more usual case is underdamped modes, which correspond to pairs of
complex conjugate eigenvalues. This is the situation for all modes of the present system, so
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there are 4Ny — 3 complex modes.

Figure 2 displays the eigenvalue properties. In addition to displaying the undamped nat-
ural frequencies, € = |\;|, and modal damping ratios, (;,, = — Re (Ax) / |\k|, the frequency
difference, Q11 — Qf, and the average bandwidth, — Re (Ar4+1) — Re (A) are plotted in order
to assess the relative closeness of adjacent modes. As noted in the discussion in Part I, eq.
(10), one can anticipate that the FRFs will exhibit mode coupling whenever the frequency
difference Q1 — €y is less than — Re (A1) — Re (\g) . This is the case for modes 8 and 9.
Also notable is the wide range of damping ratios, which will be seen to significantly affect
the data analysis.

The present work assesses AMI’s performance when applied to synthetic FRF data de-
scribing the transverse displacement and torsional rotation at four locations on each beam:
r1=1,29=2,23=3,and 4, =4 mon beam 1 and x5 = 1, z¢ = 2, 7 = 3, and xg = 3.85
m on beam 2. Both beams have the same displacement at their junction. As a result, the
data to be synthesized consists of fifteen impulse responses: seven displacements and eight

rotations, which are grouped to form a vector according to
{y ()} = [w1 ws w3 wy 01 02 03 04 ws we wr 05 O O O] (5)

The FRF data will be a synthetic set mimicing an experiment in which a transverse
impulsive force is applied at the first displacement point, so P = 1. The impulse responses
are obtained analytically by employing a modal transformation that leads to a set of un-
coupled equations for the modal generalized coordinates. The impulse response of a modal
coordinate has the general form &, = Cj exp (Axt), where A, are the modal eigenvalues and

the participation factors C} depend on the modal coefficients for the drive point. The modal
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coordinates are evaluated at a uniform increment of time at a fixed sampling rate At within
a window 0 < t < t,.«, based on sampling criteria discussed later. The state-space modal
transformation then yields a data set describing the history of the unconstrained set of Ritz
series coefficients. Values of the full set of Ritz series coefficients are then obtained from the
solution of the constraint equations. Finally, the impulse responses of the {y} variables are
obtained by synthesizing the Ritz series, egs. (1). The same procedure when applied to the
state-space eigenvector leads to the displacement pattern in any mode. Details of each step
of this analysis are provided by Ginsberg!!.

The impulse response of each element of {y (¢,)} is contaminated by white noise that is

scaled relative to the peak magnitude of that variable, according to

Yj (tn)corrupt =y; (t,) + max (yj (ta)) Tjn (6)

where —1 < rj, < 11is a uniformly distributed random number and « is a constant that scales
the random value to the required fraction of signal amplitude (0.02 for the data analyzed
here). FFT processing of the contaminated impulse response data for each j yields the FRF

Hjp (w).

III. RESULTS

The objective here is to assess the capability of AMI when the data has been sampled
properly. Toward that end, the time window in which the impulse responses are sampled
was set such that the slowest decaying complex modal coordinate reduced to an amplitude
not exceeding 107* of its maximum. This is attained if ¢y, > In(10%) /min (|Re (\)]).
The sampling rate was set by the Nyquist criterion for the highest natural frequency, which
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requires At < 7/ max (|Im (Ar)|). The values that were used are ty., = 14.2 sec. and
At = 0.217 ms, which corresponds to 2! time values for each displacement variable. The
frequency response data was truncated at w = 3800 rad/s, so the length of a frequency data
set processed by AMI is 8589 samples.

As previously described, the excitation index is P = 1. Figure 3 shows Hy; (w), which
is the noise-contaminated FRF at the drive point. Only seven resonant peaks are easily
distinguished. For comparison, the noise-free analog in Figure 4 shows ten peaks. However,
eleven modes have natural frequencies in the plotted frequency band. The discrepancy
of each figure between the number of peaks and the number of in-band modes is readily
explained. In the case of the analytical data, the expanded window shows only one peak in
the vicinity of modes 8 and 9. The missing peak is a combination of coupling of these modes,
and poor excitation of one of them, as will be seen. Figure 3 corresponds to superposition of
white noise onto Figure 4. The level of this noise is comparable to the level of the resonant
peaks above 2000 rad/s, resulting in masking of all high frequency peaks in the data to be
processed by AMI.

To better understand the masking effect of noise consider the noise model invoked in eq.
(6), in which the noise amplitude in the time domain is constant and scaled by the peak
impulse response. In the frequency domain this represents white noise whose level in an FRF
also is scaled proportionately to the peak amplitude of the corresponding impulse response.
Because the noise level is essentially flat in frequency, the signal-to-noise ratio of H;p (w) in
the vicinity of a resonance peak is set by the magnitude of the corresponding noise-free data.

When the damping is light, so that |Re (Ax)| < Im ()\), a resonance is well approximated
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as w = Im (\;) . Combining egs. (4), (6) and (7) of Part I shows the peak FRF to be

RO
(HjP)peak ~1 Jzk i (7)

where Ujy, is the kth modal coefficient for displacement j and (,, is the modal damping ratio.
Thus, for a specified measurement point (fixed j) the modes k£ having the lowest peaks are
those that are either the least responsive at the drive or measurement point, or most heavily
damped. The normal mode functions for transverse displacement, which are presented later,
decrease significantly with increasing frequency. Furthermore, Figure 2 shows that modes 8
and 9 are the most heavily damped, other than mode 1. Thus, the FRF contributions of the
high-frequency modes may be expected in general to be masked to a greater extent, with
the effect especially noticeable for modes 8 and 9.

The FRF for the torsional rotation at the drive point, Hs (w), is depicted in Figure
5, while Figure 6 is the noise-free version. These present a different picture, in that ten
peaks are evident even in the noisy data. Modes 8 and 9 are still coupled, but the torsional
modal responses at © = 1 meter on the first beam is sufficient to exceed the added noise
level. Careful examination of the enlarged view in Figure 6 shows that there is a slight
dimple in the coupled peak, which suggests the presence of multiple modes, but this feature
is completly masked by the noise. Most of the other FRFs are like Figure 3, in that the
resonances above 2000 rad/s are masked. However, a few show one or more peaks in the
upper frequency range. Typical of the latter is Figure 7, which depicts the torsional response
at x = 2 meter on beam 2. Overall, the first seven modal peaks occur in each FRF, but the
number of higher frequency modes that appear ranges between zero and three.

Application of the first two stages of AMI to each FRF yields multiple estimates of the
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eigenvalues in the range below 3800 rad/s, at which the FRFs are truncated. Table 1 lists
the number of eigenvalues and corresponding mode numbers obtained by processing each of
the seven displacement FRFs and eight rotation FRFs. It is not surprising, given the fact
that none of the FRFs display peaks at all eleven natural frequencies in this range, that in
no case did processing an FRF give eleven eigenvalues. The first seven modes were identified
in each FRF. For the closely spaced pair of modes, mode 8 was identified from a single FRF
and mode 9 was identified in only three FRFs.

Except for modes 8 and 9, the magnitude of the analytical eigenvalues are quite distinct,
as evidenced by Figure 2. In those cases, averaging like eigenvalues identified in each FRF
is straightforward. In contrast, because of their closeness, merging the eigenvalue results
for modes 8 and 9 poses a dilemma, especially if one divorces themself from analytical
knowledge of the eigenvalue structure. The difficulty arises because no single FRF' yielded
both eigenvalues. Thus, these modes are a manifestation of the earlier discussion as to
whether eigenvalues obtained from different FRFs should be averaged or kept distinct. The
results obtained from the four FRFs giving Ag or A\g are listed in Table 2. One indication that
the value obtained from FRF 5 does not belong to the values obtained from FRFs 12 to 14
is the fact that its real part deviates significantly from the other tabulated values. However,
this difference is less than 25%, so it might be that the estimate from FRF 5 has a large
error. Thus, consideration passes to the merger criterion in Part I, eq. (10). The values of |A|
obtained from FRFs 12 to 14 are very close, so this criterion fails by a large margin, leading
to the conclusion that they describe the same eigenvalue. In contrast, the largest average

bandwidth using the tabulated A from FRF 5 and any other FRF is 40.803 rad/s, while the
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smallest corresponding natural frequency difference 19.649 rad/s. The merger criterion is
(barely) met in this case, so the eigenvalue obtained from FRF 5 is taken to be distinct from
the others.

The statistics of the averaged imaginary parts of the eigenvalues are provided in Table
3, while the corresponding information for the real parts appears in Table 4. The largest
error in |Im (Ax)| relative to the analytical value is 0.4% for mode 8, but the average error
for all modes is 0.04%. Also note that the 21.7% error for Re (Xg) is the largest, but the
average error for all Re (\y) is 3.7%. For both parts the standard deviation is a small fraction
of the corresponding mean value, especially for modes 1 to 7, which means that there was
little scatter in the individual values. Equation (4) in Part I converts the eigenvalues to
modal natural frequency and damping ratio. The average errors are found to be 0.04% for
frequency and 3.7% for the damping ratios. (The fact that these statistics are like those of
the imaginary and real parts part of each eignevalue is is a consequence of the former being
much larger and more accurate than the latter.) This represents a substantial improvement
over the previous AMI algorithm. Zaki® reported 1.73% average error in natural frequency
and 12.68% in damping ratio. (As described in the Introduction, the system used by Zaki
was slightly different, so this is not a perfect comparison.)

The transverse displacement and torsional rotation for the seven lowest frequency modes
are depicted in Figure 8; the abscissa is the distance along the centerline measured from
the supported end of beam 1. Only the imaginary part of the mode function is displayed
because the real parts of the mode functions are much smaller. For example, the most highly

damped mode is the first, with a modal damping ratio of 0.0096. The ratio of the maximum
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imaginary part to the maximum real part of the displacement in this mode is 120. This
ratio is substantially higher for the other modes. (It can be proven that damped modal
analysis of an undamped system will lead to purely imaginary eigenvectors that match the
undamped modes. The dominance of the imaginary part of the modal displacement here is
a consequence of the smallness of the overall damping level.)

The two spans are nearly equal, but it is easier to interpret the analytical modes if one
first considers the case of equal span lengths. The modes then would be either symmetric
or antisymmetric. The definition of positive w and 6 for each span is such that a symmetric
pattern would consist of a function for w that is even with respect to the midspan, while
the function for # is odd. Thus, the odd numbered modes in Figure 8 are comparable to the
symmetric modes, and the even modes are like the antisymmetric modes. Increasing mode
number is marked by an increase in the number of inflection points for w, but not for 6.
This is a consequence of the fact that the beams are substantially stiffer in torsion than they
are in flexure, so that the lower natural frequencies of the joined beams are well below the
frequency at which either beam resonates in torsion.

It is evident that the first seven modes obtained from AMI are in close agreement with
the analytical values. Even the jump in the torsional rotation at the juncture of the beams
is captured. The seven displacement data points used to synthesize the data for AMI give a
good picture of the torsional rotation for each mode in Figure 8, and they adequately sample
the displacement pattern in the first five modes.

Figure 9 indicates that there also is good agreement between AMI’s identification and the

analytical values of modes 10 and 11, although it is evident that the analytical modes have
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been undersampled. This figure also shows that the differences between the identified and
analytical modal displacements are substantial for modes 8, while the discrepancies for mode
9 are less severe. Not shown is the fact that the AMI prediction for mode 8 has a real part
that is not small compared to the imaginary part. Furthermore, the identified real part shows
an irregular pattern for both displacement and torsional rotation. Modes 8 and 9 are the
ones whose natural frequencies are close, with significant damping, but another factor also
is responsible for the errors in the modes shapes. To recognize this consider the analytical
mode functions. In mode 8 there is little displacement in the left span, x < 4 m, and little
torsional rotation in the right span. This pattern is reversed for mode 9. Situations like this
are recognized as mode localization phenomena, described by Pierre, Tang, and Dowell.'?

The significance of the occurrence of mode localization lies in eq. (7). The excitation
used to construct the present data set was a transverse force at * = 1 m on the first span.
Examination of the displacement functions in Figure 9 shows that mode function 8 at x = 1
m is an order of magnitude smaller than mode function 9. Hence, the lower frequency mode
is much more weakly excited. At most locations, the 8th modal response is masked by the
noise, which is scaled by the maximum displacement at that location, or else it is dominated
by the 9th modal response because of mode coupling. The one FRF from which mode 8 was
identified was the torsional response at = 1 m on the first span. Observe in Figure 9 that
because of mode localization, the 9th modal response is very weak along this span, thereby
leaving an opportunity for mode 8 to appear.

For comparison purposes, the noise-contaminated FRF data sets were analyzed using the

rational fraction polynomial (RFP) method. This is an MDOF method in which an FRF is
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represented as a ratio of polynomials in (iw). Clearing the denominator leads to

Hyp) Y b (i) = 3 ()" ®)

When this expression is evaluated at many frequencies where the FRF value is known, the
result is a set of linear equations for the a; and by, coefficients that are solved in a least-squares
sense. The eigenvalues and residues are readily obtained from these coefficients. The RFP
version that was implemented follows the development provided by Maia et al,** including
the application of orthogonal polynomials. This version concurrently processes all FRFs,
thereby leading to a single global estimate of the eigenvalues. However, computer memory
limitations made it necessary to process a limited amount of data at once, so the system
order was restricted to not exceed ten. For the same reason, the full frequency range was
decomposed into three bands that contained modes 1-5, 6-7, and 8-11. These restrictions
also served to avoid ill-conditioning in the numerical analysis.

Because RFP requires an initial guess as to the number of participitory modes, computa-
tions within each frequency band were carried out with a range of guesses up to a maximum

of ten. A stabilization chart!®

was constructed to identify which modes were consistently
identified. Figure 10 shows the stabilization chart for the frequency band containing modes
8-11. Like AMI, this implementation of RFP had the greatest difficulty in this range. The
marks in the chart indicate the frequencies, |Ax| identified by RFP for each model order from
three to ten. The FRF that accompanies these values is a composite obtained by adding
the absolute value of the eleven individual FRFs at each frequency. It serves to pictorially

indicate where natural frequencies might reside. At each peak no consistent pattern is ob-

served, with the scatter at the second and third peaks being quite substantial. Also, the
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apparent convergence to an eigenvalue at 3800 rad/s should be ignored because it is at the
limit of the frequency band. Note that there is no system order at which the stabilization
chart indicates the presence of two modes in the vicinity of 2500 rad/s, where modes 8 and
9 are situated.

Because of the limitation on the system order, no consistent pattern was recognized. For
this reason, the RFP results discussed here are for the model order that yielded estimated
natural frequencies closest to the analytical values. For the lower and upper frequency bands
the best results were obtained when the system order was set to nine, while a system order
of six gave the best results for modes 6 and 7. For the first seven modes, RFP showed an
average error in Im (\;) of 0.22%, with a worst case of 1.2% for mode 1. The corresponding
errors for Re () were 7.1 % average, with a worst case error of 24.8% for mode 2. Mode 8
was not detected at all by RFP. For modes 9 to 11, the average error of Im (\;) was 0.68%,
with a worst case of 1.36% for mode 11. Mode 11 also had the largest error for Re (\x),
at 60%, while the average error of Re () for these modes was 24%. These statistics are
substantially worse than those for AMI, as described by Tables 3 and 4. Also, AMI did

succeed in identifying mode 8.

IV. SUMMARY AND CONCLUSIONS

The performance of the linear-least-squares version of AMI was tested with synthetic data
derived from an analytical model of an elastic frame formed by joining two cantilever beams
at right angles. The frame is loaded out-of-plane, so the welded connection couples flexure

and torsion. The synthetic response data were derived by using Ritz series to represent
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the transverse displacement and torsional rotation. The temporal response to a transverse
impulse force at the quarter-point of one span was obtained by applying state space modal
analysis. The impulse responses of the Ritz coefficients were discretely sampled, and used
to synthesize the transverse displacement and torsional rotation at eight cross-sectional lo-
cations. Each impulse response was contaminated be adding uniformly distributed random
noise. The data then was FF'T processed to produce FRFs that were input to the modified
AMI. Generally, the best signal-to-ratios are obtained at resonance peaks, which are the re-
gions from which AMI selects the data for its numerical fits. However, the manner in which
the white noise was scaled resulted in masking the higher frequency resonance peaks in most
FRFs.

The span lengths of the model were selected to be nearly equal, which resulted in the
occurrence of a pair of modes, 8 and 9, having close natural frequency and modal patterns
that are localized to one span. The damping of these modes was sufficient to cause the
individual resonant peaks to merge, in the phenomenon known as modal coupling. The role
of noise was magnified by the localized nature of these modes, which weakened the modal
excitation of one and the modal response of the other.

The frequency band that was processed contained eleven modes. AMI identifed the first
seven modes when each of the fifteen FRFs were processed, but the higher frequency modes
were sparsely identified because their contribution to an FRF was masked by the added
noise. The close localized modes 8 and 9 were the most difficult to identify. Mode 8 was
identified from only one FRF, while mode 9 was found from three FRFs. The eigenvalue of

mode 8 showed the greatest discrepancy with the analytical value. Its imaginary part, which
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is analogous to the damped natural frequency for proportionally damped systems, had an
error of 0.4%, while its real part, which is the negative of the modal decay rate, was 21.7% in
error. The corresponding average errors for all eleven modes were 0.04% for the imaginary
part and 4% for the real part.

The analytical mode shapes were depicted by plotting the transverse displacement and
torsional rotation dependence on the distance along the cross-section centerline. The dis-
crete modal displacements and rotations extracted by AMI were overlaid onto the analytical
graphs. The agreement was quite good, except for mode 8. The main features of the first
five modes were clearly discernible from the discrete pattern identified by AMI. However, the
higher frequency modal patterns were undersampled because the locations selected for the
FRF data were too sparsely spaced. The error encountered in mode 8 was substantial, and
indicated that the mode was not essentially imaginary, which is unlike the corresponding an-
alytical mode function. The primary source of the lower quality of this mode’s identification
was shown to be a combination of relatively high damping and low modal response at the
drive point.

An alternative identification of the eigenvalues was also carried out using a global version
of the rational fraction polynomial (RFP) algorithm. RFP requires an a priori guess as to
the number of participitory modes. A range of guesses was used to identify the system order
giving the best results. The average and worst case errors for both parts of the eigenvalues
were found to be substantially larger than the errors encountered with AMI. Also, RFP did
not identify mode 8. In a separate computation, not reported here, RFP was applied to

the noise-free FRFs. This yielded excellent agreement for all eigenvalues, including that for
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mode 8. This observation suggests that RFP is more sensitive to noise than is AMI.

The results presented here indicate that the current version of AMI algorithm is capable
of accurate system identification in the presence of extreme noise and modal coupling. At
the same time, modes that are weakly excited were found to be more difficult to identify,
because they were barely discernible relative to the noise floor. In this sense, AMI is like
other techniques that process response data derived from a single excitation. One can antic-
ipate that extension of AMI to process simultaneously response data obtained from several

excitations might address this shortcoming.
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Displacement Identified modes
data set # Indices

(1) wy @z =1 7 1-7
(2) we @ 2y =2 7 1-7
(3) ws @z =3 7 1-7
(4) wy Q@ =4 7 1-7
5) 0y @z =1 10 1-8, 10,11
(6) 0 @ 2y = 2 9 1-7, 10,11
(7) 03 @z =3 7 1-7
(8) 04 @z =4 9 1-7, 10,11
(9) ws Q@ 2y =1 7 1-7
(10) wg @ 2z =2 7 1-7
(11) wy @ 29 =3 7 1-7
(12) 65 @ 25 =1 10 1-7, 9,10,11
(13) O @ 29 =2 9 1-7, 9,10
(14) 6; @ 29 =3 9 1-7, 9,10
(15) Os @ x5 = 3.85 8 1-7,10

Table 1: Modes identified by processing each set of displacement data. (Maximum number

of modes is 11.).



FRF # Eigenvalue
5 —22.876 £ 2490.838:
12 —17.927 £ 2510.592:
13 —17.153 £2511.112:
14 —17.221 £ 2510.661:

Table 2: Identified eigenvalues for the 8th and 9th modes obtained by processing individual

FRFs.



[T ()]

Mode Analytical Standard
Mean
number value deviation
1 68.008 68.005 0.0072
2 265.912 265.913 0.0022
3 386.325 386.332 0.0200
4 829.452 829.452 0.0008
5 1033.752 1033.754 0.0276
6 1697.012 1697.013 0.0047
7 1937.890 1937.912 0.0695
8 2479.743 2490.838 0.0000
9 2511.042 2510.788 0.2305
10 2995.661 2995.853 0.3833
11 3380.042 3380.367 0.4793

Table 3: Statistics of the identified natural frequencies.




—Re())

Mode Analytical Standard
Mean
number value deviation
1 0.6565 0.6557 0.0080
2 0.1640 0.1641 0.0011
3 0.4826 0.4836 0.0040
4 0.2670 0.2670 0.0010
5 0.7935 0.7929 0.0146
6 0.6107 0.6115 0.0028
7 3.1205 3.0668 0.1123
8 18.7961 22.8759 0.0000
9 18.1254 17.4338 0.3496
10 5.3462 5.0665 0.5277
11 5.2109 4.7864 0.6445

Table 4: Statistics of the identified modal decay rates.).
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Figure 1: L-shaped frame cantilevered at both ends with attached dashpots.
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modal bandwidths for the first twenty modes of the frame.
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Figure 5: Noise contaminated rotation FRF at =1 m on beam 1.
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Figure 6: Noise-free rotation FRF at x =1 m on beam 1.
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Figure 10: Stabilization chart corresponding to results from the RFP alogorithm for a range

of model orders. Im (A\) obtained from RFP: o, composite FRF: —.





