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Abstract: 

This work presents time-frequency signal processing methods for detecting and characterizing 

nonlinearity in transient response measurements.  The methods are intended for systems whose 

response becomes increasingly linear as the response amplitude decays. The discrete Fourier Transform 

of the response data is found with various sections of the initial response set to zero.  These frequency 

responses, dubbed Zeroed Early-time Fast Fourier Transforms (ZEFFTs), acquire the usual shape of 

linear Frequency Response Functions (FRFs) as more of the initial nonlinear response is nullified.  

Hence, nonlinearity is evidenced by a qualitative change in the shape of the ZEFFT as the length of the 

initial nullified section is varied.  These spectra are shown to be sensitive to nonlinearity, revealing its 
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presence even if it is active in only the first few cycles of a response, as may be the case with macro-slip 

in mechanical joints.  They also give insight into the character of the nonlinearity, potentially revealing 

nonlinear energy transfer between modes or the modal amplitudes below which a system behaves 

linearly.  In some cases one can identify a linear model from the late time, linear response, and use it to 

reconstruct the response that the system would have executed at previous times if it had been linear.  

This gives an indication of the severity of the nonlinearity and its effect on the measured response.  The 

methods are demonstrated on both analytical and experimental data from systems with slip and impact 

nonlinearities. 

1. Introduction 

The vast majority of structural dynamic systems are modeled as linear and time invariant, in part 

because this class of systems is well understood and a number of powerful tools are available for their 

analysis.  There is often a need to perform experiments to determine whether a given system can be 

adequately modeled as linear.  Since all real systems are nonlinear, this boils down to estimating the 

error that may be introduced by approximating a nonlinear system as linear.  In the event that testing 

reveals that the system of interest cannot be adequately modeled as linear, one would often also like to 

identify the nature of the nonlinearity. 

This work is motivated by recent experiences testing and modeling components that are 

subjected to high amplitude shock loading.  A variety of critical space and automotive systems are 

subjected to these types of loads.  These components present quite a challenge in both testing and 

modeling especially if they contain mechanical joints.  Bolted joints in these components may slip due to 

the high forces that the components experience, so they can no longer be treated as linear at high loads.  

Macro slip in joints is difficult to model because the force in the joint can be hysteretic in nature, 

depending not only on the displacement of the joint but on the past history of displacement.  Also, the 

shock force may have high frequency content so many modes may be important when modeling or 

testing the component’s response to the shock.  This work presents a simple tool that helps one to 

evaluate the degree of nonlinearity induced in a subcomponent’s response by impulsive loading. 
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Numerous methods have been proposed for detecting nonlinearity and for identifying parametric 

models of nonlinear systems, especially in the past few decades.  Kerschen et al provide a thorough and 

recent survey of identification methods for nonlinear systems [1].  Many schemes are limited to persistent 

inputs, such as periodic, broadband random, etc…, but those cannot be used in this application for a 

number of reasons: 

1. The components are designed to withstand shock inputs, so we desire to test them in a shock 

environment. 

2. High-amplitude persistent inputs are much more expensive to apply than high level transient inputs. 

3. Models derived through steady state testing may not accurately reproduce the response of the 

system to shock excitation. 

4. The components may be destroyed or degraded by prolonged testing with high level periodic inputs.   

The literature also contains a quite a few methods that are applicable to transient response data, 

as is of interest here, but each of these has limitations that preclude its use in this application. Some are 

essentially limited to SDOF or low order systems, such as the restoring force surface method [2, 3], 

others, such as the NARMAX approach, do not provide much physical insight.  Other promising methods 

for the application of interest involve time-frequency analysis [4] and the Hilbert Transform [5].  The 

Hilbert Transform can be used to detect the instantaneous frequency and decay envelope of a signal, 

which are related to the instantaneous stiffness and damping respectively, but it is limited to mono-

component or single degree of freedom systems.  One potential alternative [6] requires enough sensors 

to construct a modal filter [7, 8], which precludes its use in this work.  Other approaches, such as the 

Hilbert-Huang Transform (HHT) [5, 9] show promise, but are not yet fully developed. 

Various types of time-frequency analysis techniques have been proposed, such as the short time 

Fourier transform (STFT), Choi-Williams expansion, and wavelets.  These are problematic in the 

application of interest because the window functions that they employ reduce the influence of very short 

transients, but the slipping nonlinearities in the systems of interest may only be active in the first few 

cycles of the response.  There are also always limitations in the frequency resolution that can be obtained 

with any time-frequency method.  However, the biggest difference between time-frequency methods and 

the methods presented here is that the spectra obtained by time-frequency methods have different 
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customary shapes than the frequency response functions that most dynamicists are accustomed to, so 

insight gleaned from experience with linear systems may be difficult to transfer to the time-frequency 

spectra of the nonlinear response.  The methods presented in this work utilize the free response of a 

system and its Fourier Transform, which, for a linear system, have the same mathematical form as the 

impulse response and frequency response.  As a result, the spectra are similar to linear frequency 

response functions, which are familiar to most dynamicists.  The methods presented here are also 

capable of handling relatively high order systems; they can be applied to virtually any response. 

The approach presented here involves finding the discrete Fourier Transform of the response 

data with various sections of the initial response set to zero.  The resulting frequency-domain responses, 

which are named Zeroed Early-time Fast Fourier Transforms or (ZEFFTs) in this work, take on the usual 

shape of linear Frequency Response Functions (FRFs) as more of the initial nonlinear response is 

nullified.  By comparing multiple ZEFFTs, each created with a different portion of the initial nonlinear 

response nullified, one observes changes in the shape of the spectrum as the nonlinear response decays 

to the low-amplitude linear response.  A few tools are presented to aide in interpreting the results, and a 

metric is presented that describes how important the nonlinearity is to the response.  Because this 

method assumes that the nonlinearity is active early in a response and disappears, one may have to use 

care to avoid mistaking heavily damped modes with nonlinearity for some systems.  The examples 

presented here highlight the key issues for simulated systems whose linear modes have damping ratios 

that differ as much as a factor of three between any two modes in the frequency band of interest, yet the 

methods still prove to be quite effective. 

The following section presents the theory behind the nonlinear detection method.  The method is 

applied to analytical data from a system with slip, contact and cubic nonlinearity in Section 3, and the 

limitations of the method in the presence of measurement noise are discussed.  Section 4 presents the 

results of applying the algorithm to a rather complicated experimental measurement from a real system 

with a bolted joint.  Finally, Section 5 presents some conclusions. 
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2. Proposed Tools and Theoretical Development 

2.1. Zeroed Early-Time Fast Fourier Transforms (ZEFFTs) 

It is well known that many nonlinear systems are increasingly well approximated as linear as their 

response amplitude diminishes.  These systems are the focus of this work.  Although nonlinear systems 

do not have linear modes of vibration, we shall speak of such in the following, and in all cases this should 

be interpreted to mean the modes of the small-amplitude, linearized system.  The free response of the 

linearized system can be represented as a sum of decaying sinusoids, or complex exponentials, which in 

state space form [10] can be written as follows, 

 ( ) ( ) ( )* *

1
exp exp 0

0 0

N

r r r r
r

R t R t t
y t

t

λ λ
=

⎧ + ≥⎪= ⎨
⎪ <⎩

∑  (1), 

where Rr and λr are the complex residue and eigenvalue respectively, ()* denotes complex conjugate and 

N is the number of modes active in the response.  The common case of under-damped modes has been 

assumed, so the modal parameters occur in complex conjugate pairs with 21r r r r riλ ζ ω ω ζ= − + −  

where ζr is the rth damping ratio and ωr is the rth natural frequency.  Equation (1) can be expressed in 

terms of real variables in the following form (which may be more familiar to some readers) 

 ( ) ( ) ( ) ( )2 2
1 2

1
exp sin 1 cos 1

N

r r r r r r r r
r

y t t C t C tζ ω ω ζ ω ζ
=

⎡ ⎤= − − + −⎢ ⎥⎣ ⎦∑ . (2), 

The complex constants Rr, or their real counterparts C1r and C2r depend on the initial position and velocity 

of the system.  The Fourier transform of eq. (1) is the following, 

 ( )
*

*
1

N
r r

r r r

R RY
i i

ω
ω λ ω λ=

⎛ ⎞
= +⎜ ⎟− −⎝ ⎠
∑  (3) 

which has the same form as the standard pole-residue expression for the Frequency Response Function 

(FRF) of a linear system [10, 11], except that the definition of the residues is different. The residues affect 

only the modal amplitudes of the response, so, the shape of the spectrum near each peak is essentially 

the same as in an FRF but the peaks may have different heights.  The zeros in the spectrum of the free 
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response depend on the coefficients Rr and hence on the initial conditions, so they are different than the 

zeros of an FRF. 

Suppose one were to artificially set the linearized response in eq. (1) to zero up to some time 

which we shall denote tz. 

 ( ) ( )
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The Fourier transform of the zeroed response is the same as in eq. (3), only the residues change to 

reflect the initial conditions at tz.  Specifically, the Fourier transform of yz(t) is 
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The term exp(iωtz) introduces a linearly increasing phase on the responses and is a result of the well 

known time shifting property of the Fourier Transform.  This can be easily eliminated by multiplying the 

frequency response by exp(-iωtz).  After doing so, the response Yz(ω) has the exact same functional form 

as Y(ω).  Only the residues are different, so if one were to compare plots of Yz(ω) and Y(ω),  the only 

difference would be in the magnitude and phase of the peaks and the locations of the zeroes. 

The situation is dramatically different if the response is nonlinear.  A generally valid expression 

analogous to eq. (1) does not exist for a nonlinear system, but it is well known that the Fourier Transform 

of the free response of a nonlinear response can be very different from that of a linear system.  For 

example, the nonlinear forces may shift the frequencies in the response and additional harmonics may be 

present.  However, if the nonlinearity decreases with amplitude, then the response of a nonlinear system 

can eventually be well approximated as linear if one disregards enough of the initial response (or sets it to 

zero).  Once the nonlinear part of the response has been nullified, the remaining response obeys eq. (1) 

and the character of the spectrum would cease to change as more of the initial response is eliminated.  

This is the key to the zeroed-fast Fourier transform nonlinearity detection algorithm. 

These concepts are applied systematically to detect and characterize nonlinearity as follows.  

Given a response of interest, y(t), which is suspected to be nonlinear, one first selects a set of times at 
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which to zero the response, denoted tk.  Then, a set of zeroed responses yk(t) are created by assigning a 

value of zero to the response up to tk. 

 ( ) ( )
0,

,
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k
k

t t
y t

y t t t
<⎧

= ⎨ ≥⎩
 (6) 

The Discrete Fourier Transform (DFT) of each of these responses 

 Yk(ω) = DFT{ yk(t)} (7), 

is then found and the DFTs are compared.  In some cases leakage may contaminate the DFT, yet one 

can minimize it by choosing tk to be instants when the response is near zero.  The spectra, Yk(ω), are here 

dubbed Zeroed Early-Time FFTs (ZEFFTs) or zeroed FFTs.  Nonlinearity can be detected by visually 

observing the ZEFFTs to see if the response is distorted around any of the low-amplitude natural 

frequencies, or if any additional frequency content is present in the early ZEFFTs that cannot be 

attributed to the linear system. 

 

 
Example: 

The proposed method was applied to an experimentally measured response from a 305 mm long 
beam, which was bolted at one end to a 117 mm long beam, as shown in the schematic in Figure 1.  This 
hardware and experiments were described in detail in [12, 13].  The short beam was struck with an 
instrumented hammer as indicated in the figure, with an impulse whose peak force was 845 N, and the 
response was recorded on the 305 mm long beam.  The ZEFFTs of the response were created for 
various zero times and are shown in Figure 1 for frequencies near the second (linearized) mode of 
vibration.  The color of the lines indicates the zero time tk for that particular ZEFFT, and a legend is shown 
giving the times, in milliseconds for some of the ZEFFTs.  The resonance frequency of the mode in focus 
seems to increase from about 1380 Hz to about 1403 Hz as the response amplitude diminishes, causing 
the peak for early zero times to broaden.  This represents a shift of only 1.5%, yet one can clearly 
observe that the early response does not have the usual linear shape.  (This could be confirmed by 
attempting to curve-fit the response at early times, which would reveal that a linear modal model with one 
mode can not be made to agree with the measurement.) 
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Figure 1:  ZEFFTs acquired from a T-beam with a bolted joint.  The natural frequency of 

the mode in focus shifts causing a distortion in the response at early times.  This 
distortion diminishes as the response decays, revealing that the beam is nonlinear and 

that this linearized mode softens with increasing amplitude. 
 

 

This nonlinearity detection approach relies on the fact that the nonlinearity in the response 

decays rather quickly with time.  Some systems may contain certain linear modes that also decay very 

quickly with time, so it might be difficult to distinguish the two.  Fortunately, shape of the frequency 

responses often allows one to determine whether a certain feature is actually just a heavily damped linear 

mode.  For example, consider the 0 ms response in Figure 1.  One might erroneously attribute this to two 

modes, a heavily damped mode with a natural frequency of 1380 Hz and a lightly damped mode whose 

frequency is 1403 Hz.  However, if one were to construct a two-mode approximation to the 0ms response, 

one would see that the way that the shapes of the measured ZEFFTs evolve after 0 ms is not consistent 

with a two mode description.  The tools presented in the following section aid one in assessing this and 

other issues. 

 

2.2. Backwards Extrapolation for Nonlinearity Detection (BEND) 

In some instances it is not easy to visually discern nonlinear behavior from linear behavior.  This 

section proposes an approach dubbed Backwards Extrapolation for Nonlinearity Detection (BEND), which 
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aids in visualizing the degree to which a nonlinear response deviates from linear behavior.  The idea is to 

find a linear approximation to the system at later times (when it is thought to behave linearly) and then 

propagate that response backwards in time assuming linear behavior.  Hence, one can compare the 

actual response of the system with an estimate of the response that the system would have had if it were 

linear. 

The method for achieving this is actually quite simple.  If the response after a certain instant, tk, is 

approximately linear, then the corresponding zeroed response yk can be fit to the form in Equation (1) 

(this response is zero for t ≤ tk).  This fitting process obtains the poles (λr)k and residues (Rr)k describing 

the response for t > tk using one of the methods discussed in the following subsection.  Now suppose that 

we want to propagate this response backwards to time t1 in order to compare it with the measured 

response truncated at t1.  Comparing Equations (3) and (5), the residues of the linear system at time t1, 

denoted (Rr)1, are related to those at time t2, denoted (Rr)2 as follows: 

 ( ) ( ) ( )1 2

2 1
r t t

r rR R eλ −= . (8) 

The modal parameters (λr)1 and (Rr)1 can be used to reconstruct the linear approximation to the response 

in the time domain using eq. (1), or they can be used to reconstruct the ZEFFT Yk
lin(ω) using eq. (3) in the 

frequency domain. 

2.3. Suitable Linear Response Identification Methods 

A variety of methods exist that could be used to identify a linear pole-residue model from the 

responses at late times.  Allemang and Brown [14] showed how most of these can be viewed in a 

common framework, and texts by Maia et al [15] and Ewins [16] review a number of methods.  There are 

a few questions that one should consider for the present application. 

1.) Does the algorithm return non-physical or computational modes? 

2.) How accurately is damping estimated? 

3.) Is the system identification algorithm robust to noise? 

The first two are important in light of eq. (8), and considering the effect that the damping in each mode 

has on the extrapolation; error in the identified damping will directly affect the extrapolation.  Some 
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algorithms introduce computational modes that are often either heavily damped or negatively damped 

[17], and this would clearly have an adverse affect on the extrapolation.  

 To circumvent these difficulties, the authors have used an iterative system identification algorithm 

that attempts to identify only the true physical modes of the system.  The algorithm, dubbed the Algorithm 

of Mode Isolation (AMI), was first presented by Drexel and Ginsberg [18] and later extended and 

validated by Allen and Ginsberg [11, 19-23].  The algorithm works on frequency domain response data by 

identifying and subtracting modes from the data until it is reduced to noise (care is taken to avoid 

identifying and subtracting spurious modes), and the modes identified are then refined through an 

iterative procedure. 

2.4. Single Trace Metric:  Integral BEND (IBEND) 

Sometimes it is desirable to have a simple metric quantifying nonlinearity.  One such metric can be 

constructed by comparing the total area between the measured and reconstructed magnitude FRF curves 

over a specified frequency band.  (The reconstructed FRF curves are found by identifying the linear 

system from the frequency response at a certain zero time and then propagating it forward and backward 

to all other times.)  Let Yk(ω) and Yk
lin(ω) denote the measured and linearly extrapolated ZEFFTs  

associated with zero time tk.  The nonlinearity metric, IB(tk), dubbed the Integral of the Backwards 

Extrapolation for Nonlinear Detection (IBEND), is given by the following, 

 ( )
( ) ( )

( )
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L

lin
k k

k

k

Y Y d
IB t

Y d

ω

ω
ω

ω

ω ω ω

ω ω

−
=
∫

∫
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where ωL and ωH denote the lower and upper frequency limits over which the integral is computed.  For 

discrete measured data the integrals are computed for each zero time using trapezoidal integration.  If the 

response at the time at which the curve fit was performed is truly linear, the metric IB(tk) should be near 

zero for all times.  As the IBEND curve is traced backwards in time, the first time encountered (latest time) 

at which its magnitude is significantly greater than zero indicates the end of nonlinear behavior.  The 

accuracy of the system identification results can also be verified by observing that the metric remains 
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small at times in which the system is thought to behave linearly.  This will be illustrated in the following 

sections. 

3. Analytical Examples 

The nonlinearity detection algorithm was tested by applying it to synthetic data from the seven 

degree-of-freedom system shown in Figure 2.  The system consists of a small subsystem connected to a 

large master system through a nonlinear element.  Because the attached system is small, the nonlinearity 

is most evident in the responses of the attached system.  All of the masses are constrained to move in 

the x-direction only.  The following parameters were used for the system:  m1 through m5 = 1 kg, m6 = m7 = 

0.1 kg, k1 through k4 = 1e6 N/m, k6 = 1e6 N/m.  Mass and Stiffness proportional damping was used (the 

nonlinear connection was not included in its calculation) with the following damping matrix: [C] = α[M] + 

β[K] with α = 8, β = 0.00003, which gave modal damping ratios for the system (linearized about its static 

equilibrium) between 1.5% to 7.8%.  Two different functions were used for the nonlinear restoring force 

k5(x6-x2), as discussed in the following subsections. 

In both cases, the system was excited by applying a half-sine excitation pulse with 0.1 ms 

duration and with total energy Ein to mass 5.  The values used for Ein were different for each type of 

nonlinearity, as discussed in the following subsections.  To simulate a realistic scenario in the application 

of interest, it was assumed that only the acceleration of mass six (d2x6/dt2) was measured. 

k2

Y

X

k2k1 k4

m2m2m1 m4 m5

k6

m7m6

k5 (Nonlinear)

x2x2x1 x4 x5

x7x6  
Figure 2:  Seven DOF Mass-Spring System with a Nonlinear Connection 
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The following subsections describe the nonlinear force-displacement laws used for k5, 

specifically: 1.) macro-slip nonlinearity (Jenkins element) and 2.) elastic impact type nonlinearity, and 

present the results of the proposed algorithms.  

3.1.  Slip Nonlinearity 

For this case the connection between masses 2 and 6 was modeled using a Jenkins element [24] 

with a stiffness of 1e6 N and a slip force of 1000 N.  The excitation energy was Ein =3e9 Joules, and the 

response of the system was found with a time step of 1.221e-5 using Euler’s time integration method with 

a massless degree of freedom for the joint displacement.  This system will be referred to as the slip 

system or the system with the slip nonlinearity from this point forward. 

Figure 3 shows the acceleration response of mass 6 of the slip system to the impulsive force 

described previously.  Also identified are the zero crossings, which were used as the zero times tk in eq. 

(6).  One can observe that the system dissipates quite a bit of energy in the first few cycles (before 20 ms) 

following which the response decays more gradually. 
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Figure 3: Initial portion of acceleration time response of system with slip nonlinearity.  

Red circles show the time instants used to create the ZEFFTs. 
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Figure 4 shows ZEFFTs of the response; one line is shown for each of the times shown with 

circles in Figure 3.  The legend indicates tk for each response, although some of the legend entries have 

been omitted for clarity.  The responses exhibit significant changes in character in the 150 to 300 Hz 

frequency range for early times (zero times under about 30 milliseconds.)  Most notably, the spectrum 

around the 180 and 230 Hz modes is lopsided for early zero times and then looks more as expected for a 

linear system after about 30ms. 
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Figure 4:  ZEFFTs of Acceleration for slip system for the time response in Figure 3. 

Some of the responses in Figure 4 were curve fit and extrapolated backwards in time in order to 

compare them with the measured (nonlinear) responses from early times.  An example of this is shown in 

Figure 5 where the response at 21.9 ms was curve fit and was then extrapolated back to 4.52 ms using 

eq. (8).  (This was the earliest tk in the set after the input had ceased.)  The curve fit at 21.9ms, shown by 

a dotted red line, agrees very well to the response data at the same time, shown by a solid red line.  

However, there are marked differences between the extrapolation of this response and the data at 4.52 

ms.  First, the response data has much higher amplitude between the resonant peaks than does the 

linear system extrapolation.  Also, the amplitude of the peak near 280 Hz is considerably lower in the 

extrapolation than in the measurement. 
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Figure 5:  BEND - ZEFFTs of Accelerations for slip system zeroed up to 4.52ms and 

21.9ms, curve fit at 21.9ms and extrapolation of the fit to 4.52ms. 

The same procedure was repeated with the curve fit applied to the response at 97.1ms and then 

extrapolated to 29.2ms (not shown).  In this case there was no discernible difference between the 

‘measured’ response and the extrapolated response, suggesting that the system behaved linearly over 

this time period.  The IBEND metric, given in Figure 6, characterizes this over all time using the curve fit 

for the 21.9ms ZEFFT, which was shown in Figure 5.  The integral metric is small for all times later than 

21.9ms, suggesting that the curve fit was accurate.  Moving backwards in time, one observes that the 

curves begin to disagree at about 10 or 15 ms, suggesting that the system begins to behave nonlinearly 

at that time.  (Marching forward in time, this is the instant at which nonlinear behavior ceased.) 
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Figure 6: IBEND – metric for system with slip nonlinearity. 

3.1.1. Discussion 

One interesting feature of Figure 5 is the difference in the heights of the peaks in the measured 

and extrapolated responses at 280 Hz.  The fact that the extrapolated response has lower amplitude than 

the measured response suggests that this mode dissipated energy due to the nonlinearity before the 

curve fit was performed (or else transferred it to another part of the spectrum).   However, one must use 

care in interpreting this type of result, because the amplitudes of the peaks in the backwards extrapolation 

are very sensitive to the damping ratio identified (from the latter part of the time response), and damping 

can be difficult to estimate accurately.  On the other hand, the extrapolation is helpful even if the damping 

estimate is questionable because it helps one to determine which features in the spectrum could not be 

described by a linear system model. 

The true nonlinear behavior of this system was found by using the model to recreate the force in 

the nonlinear joint versus its displacement, as shown in Figure 7.  This shows that the joint slips in two 

initial cycles all within 12ms of the impulse.  Following those slip events, the joint behaves almost linearly 

oscillating between -1 and -3 mm displacement.  This analytical result validates the insights obtained by 

the IBEND algorithm.  Note that in most experiments a residual displacement such as this would be 

extremely difficult to measure due to the noise and insensitivity inherent in most transducers at zero 

frequency. 
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Figure 7:  (left) Analytically generated plot of force versus displacement in the slip joint.  

(right) Displacement of nonlinear joint versus time. 

The instants at which the ZEFFTs were created were shown in Figure 3.  Those were all chosen 

to be instants when the response was near zero in order to reduce leakage effects in the ZEFFT plots of 

Figure 4.  However, the authors have also obtained good results for the systems presented here using 

arbitrarily chosen stating points.  The backwards extrapolation theory developed in Section 2 holds for 

any choice of starting points. 

3.2.  Contact Nonlinearity 

The second case considers a model for contact nonlinearity in the joint connecting masses 2 and 

6.  The following force displacement law was used 

 5 5 5 5 5

5 5 5 5 5

contact

c c contact

k k
f

k k k k
β
β

⎧ Δ + Δ Δ < Δ
= ⎨ Δ + Δ Δ ≥ Δ⎩

 (10) 

where Δ5 = (x2-x6), k5=1e6 N/m and kc = 20 is a unitless multiplicative factor that specifies how much the 

stiffness of the joint increases when contact occurs.  The excitation energy Ein was 4e9 Joules. 

 Figure 8 shows the acceleration of mass 6 for this system, simulated using adaptive 4th-5th order 

Runge-Kutta integration to produce a response with a time step of 1.221e-4 seconds.  To simulate a more 

realistic scenario, white noise was added to the response with a standard deviation equal to 2% of the 
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root-mean-square amplitude of the response.  Large positive accelerations are seen in the early part of 

the time history due to the contact nonlinearity, while at later times the response is dominated by low 

frequency, lower amplitude oscillations. 
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Figure 8:  Acceleration time response of system with contact nonlinearity and the time 

instants used to create the ZEFFTs. 

The ZEFFTs of the response in Figure 8 were computed and are shown in Figure 9.  At early 

times there is clearly much more spectral energy both at the natural frequencies and throughout the entire 

frequency band.  This energy appears to vanish after about 20ms so that four or five modes are visible in 

the response.  The apparent noise in the response grows significantly with increasing time since the 

response amplitude is diminishing, especially at higher frequencies. 
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Figure 9:  ZEFFTs of Acceleration for contact system, truncated at each of the time 

instants shown in Figure 8. 

The responses in Figure 9 were curve fit in order to detect the end of nonlinear behavior.  It was 

observed that the 290 and 370 Hz modes were difficult to identify in this response data.  System 

identification was attempted at a few different zero times before good results were obtained.  Figure 10 

shows the curve fit to the response at 27.2ms and its extrapolation backwards to 1.34 ms and forwards to 

81.8 ms.  When the identification was performed on earlier ZEFFTs, spurious frequency content above 

300 Hz masked the presence of the 370 Hz mode and contaminated the damping estimate for the 290 Hz 

mode.  On the other hand, when ZEFFTs from times later than 80 ms were used in the identification, 

those modes had disappeared and could not be identified. 



 

Page 19 of 27, Allen & Mayes,  

0 50 100 150 200 250 300 350 400
103

104

105

106

Frequency (Hz)

M
ag

ni
tu

de

 

 

27.2
Fit to 27.2
1.34
Extrap from 27.2 to 1.343
81.8
Extrap from 27.2 to 81.79

 
Figure 10: BEND - ZEFFTs of Accelerations for contact system truncated at 1.34, 27.2 

and 81.8 ms, curve fit at 27.2 ms and extrapolation of the fit to 1.34 and 81.8 ms. 
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Figure 11:  IBEND metric for contact system response data. 

The IBEND metric for this contact system, computed using the ZEFFTs from 0 to 400 Hz, is 

shown in Figure 11.  The integral is minimum around 25 ms and increases sharply moving towards earlier 

times, suggesting that there is significant nonlinear behavior that ends after 25 ms.  The integral also 
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increases slightly going forward in time after 25 ms, indicating that the fit quality deteriorates at later times 

also. 

3.2.1. Discussion 

Once again, we can confirm these results using the analytical model.  Figure 12 shows the 

displacement in the nonlinear joint both versus time and versus the force in the joint.  This indicates that 

the last contact event occurs just before 25ms, although the negative amplitude responses suggest that 

the contacts that occur after 12 ms are much smaller than those that occur previously.  The integral metric 

in Figure 11 shows a significant discrepancy before 25 ms, which becomes larger before 10 ms, agreeing 

with these observations.  However, it was also noted that the integral metric increases slightly as time 

advances from the instant in which the curve fit was performed (25 ms).  This phenomenon is to be 

expected when the response measurement is noisy.  The signal-to-noise ratio of the measurement 

decreases as more of the initial, high-amplitude response is nullified, so one would expect the correlation 

between the fit and the measurement to deteriorate as well. 
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Figure 12:  (left) Analytically generated plot of force versus displacement in nonlinear joint 

for contact system.  (right) Displacement of nonlinear joint versus time. 

It was noted that there was some difficulty in determining which of the frequency responses in 

Figure 9 should be used to identify the low-amplitude linear system in this case.  In general, one can 

expect that it may often be necessary to attempt the curve fit at multiple zero times before identifying an 
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appropriate model.  During this process, one would like to use late time responses in order to be sure that 

the nonlinearity is not active, but if data from very late times is used, then quickly decaying modes, may 

have already fallen below the noise threshold and hence may be difficult or impossible to identify.  Such 

was the case with the 370 Hz mode in this data set.  That mode vanished a short instant after which the 

nonlinearity disappeared, so it is difficult to be sure that the damping estimate for that mode was 

accurate.  A different system might have a mode that vanishes completely before the nonlinearity 

disappears, so one must be cautions to assure that heavily damped linear modes are not erroneously 

mistaken for nonlinear behavior, especially when noise in the measurements is significant.  Fortunately, 

the ZEFFTs may still help to interrogate the response, even if some regions of the spectra must be 

omitted from consideration due to these difficulties. 

4. Experimental Measurements 

This section explores the performance of the nonlinearity detection algorithm on experimental 

measurements.  The system consists of a small electronic component that is bolted to larger conical 

structure.  The system is freely suspended and subjected to a very short duration impulsive load.  A 

modal test previously performed on the system identified several modes below 1kHz, all of which were 

lightly damped for low level modal test inputs.  A measured time response of the system near the 

electronic component is shown in Figure 13, recorded with a sample frequency of 200 kHz. 
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Figure 13:  Experimentally measured response on a subcomponent due to an impulsive 

load. 

The nonlinearity detection algorithm was applied at each of the zero crossings indicated with 

circles in Figure 13, and is shown in Figure 14.  A broad peak is observed in the early time responses 

situated between 300 and 600 Hz, which does not appear to be typical of a linear system.  This peak 

disappears after about 3.5ms, revealing a number of sharper peaks between 200 and 600 Hz. 
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Figure 14:  ZEFFTs of experimentally measured acceleration truncated at each of the 

zero crossings identified in Figure 13. 

The AMI system identification algorithm was applied to the ZEFFT of the response at 3.84ms, 

identifying four modes below 800Hz.  The curve fit and extrapolations to 0 and 5.87ms are shown in 

Figure 15, along with the corresponding measurements.  Good agreement is seen both in the curve fit at 

3.84ms and its extrapolation to 5.87ms below about 675 Hz, suggesting that the curve fit is reasonable 

and that the system behaves linearly over this time period.  On the other hand, poor agreement is seen at 

0ms, and one can see that an unreasonable number of linear modes would have to be added to the fit 

response before the curve fit could be made to agree with the measurement at 0ms.  For example, the 

peak at 230 Hz is far too low in the measurement, so if the damping estimate for that mode is not greatly 

in error, then there must be another mode with a similar natural frequency that cancels that modes’ 

response at 0ms, but which is not active later.  The physics of the problem might rule out that possibility.  

Alternatively, if one accepts the hypothesis that the system is nonlinear, then the discrepancy in the 

heights of the peaks at 230 Hz can be explained by nonlinear dissipation or energy transfer to higher 

frequency modes. 
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Figure 15:  ZEFFTs of experimentally measured accelerations at 0, 3.84 and 5.87ms, 

curve fit at 3.84ms and extrapolation of the fit to 0 and 5.87ms. 

The IBEND algorithm was applied to the data in the 200 to 650 Hz frequency band, and is shown 

in Figure 16.  The integral metric suggests that the system behaves linearly after 2 ms.  However, the 

IBEND metric also increases slightly as one marches forward in time from the curve fit instant (3.84 ms).  

This could indicate that the curve fit was somewhat inaccurate, or it may simply be a consequence of 

noise in the measurement, as was discussed in Section 3.2.1.  The IBEND metric and the features in the 

ZEFFTs in Figure 15 both provide a strong indication that this system is behaving nonlinearly.  The 

frequencies of the two dominant modes (at 330 and 620 Hz) seem to change with time in the ZEFFTs and 

the spectrum between these modes shows frequency content that does not seem to be describable by a 

reasonable number of linear modes.  The peak in question is the dominant peak in the spectrum of the 

response, so one should model this system as nonlinear or else apply large safety factors to the linear 

models. 
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Figure 16:  IBEND algorithm for experimental data using 200-650Hz frequency band. 

5. Conclusions 

This work has presented a set of tools that aid in detecting and characterizing nonlinearity in free 

response measurements and has evaluated them on both analytical and experimental acceleration data.  

The first tool, dubbed the Zeroed Early-time Fast Fourier Transform (ZEFFT), allows one to interrogate a 

free response and obtain a visual indication of the degree of nonlinear dynamic behavior in the response.  

This is done by inspecting the spectra of the response when varying portions of the initial response have 

been set to zero.  When the system response is linear during some latter part of its free response, one 

can identify the low amplitude linear system and compare its response with the measured nonlinear 

response.  This was dubbed the Backwards Extrapolation for Nonlinearity Detection or BEND algorithm, 

and was shown to be useful in clarifying the interpretation of the ZEFFTs.  The BEND algorithm can also 

provide other information.  For example, when applied to the analytical slip system the BEND algorithm 

identified a mode that seemed to disspate a significant amount of energy due to the nonlinear forces.  

The last tool presented here was the integral of BEND (IBEND), which was shown to provide a single 

number measure of the degree of nonlinearity in the response. 

Both analytical and experimental data have been considered to evaluate these tools.  The 

analytical data illustrated that the algorithm can be used to accurately detect the time (or amplitude level) 

at which a system begins behaving linearly.  This information may be useful when validating analytical 

models for slip or contact nonlinearity.  The method also allows one to evaluate the degree of nonlinearity 
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in the response.  Figure 5 showed that the response of the analytical slip system was not very different 

from its linear approximation while the other systems considered showed dramatic nonlinear behavior. 

The algorithm was also applied to experimental data from a system with a bolted joint.  The measurement 

was very noisy, but some useful results were still obtained, demonstrating that the approach is robust to 

noise and the other limitations inherent to real experiments.  The examples presented here have also 

shown that the algorithm may reveal which modes are most strongly affected by nonlinearity, reducing the 

effort required to perform subsequent nonlinear identification and analysis on the system. 

These tools are valuable because they can be applied to relatively high order systems, even if the 

information obtained is more qualitative than quantitative.  The experimental data used in Section 4 came 

from a system that has several modes in the frequency band of interest.  However, only a few modes 

were significant in the response, so system identification was successful in the 200-650 Hz frequency 

band.  The tools presented here proved very valuable in the test and analysis campaigns of that system, 

because they provided clear evidence that the system, which was initially thought to be linear, was 

actually behaving nonlinearly. 
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