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Abstract: 
 
A method for identifying a piecewise-linear approximation to the nonlinear forces acting on a 

system is presented and demonstrated using response data from a micro cantilever beam.  It is based on the 

Restoring Force Surface (RFS) method by Masri and Caughey, which is very attractive when initially 

testing a nonlinear system because it does not require the user to postulate a form for the nonlinearity a 

priori.  The piecewise-linear fitting method presented here assures that a continuous piecewise-linear 

surface is identified, is effective even when the data does not cover the phase plane uniformly, and is more 

computationally efficient than classical polynomial based methods.  A strategy for applying the method in 

polar form to sinusoidally excited response data is also presented.  The method is demonstrated on 

simulated response data from a cantilever beam with a nonlinear electrostatic force, which highlights some 

of the differences between the local, piecewise linear model presented here and polynomial-based models.  

The proposed methods are then applied to identify the force-state relationship for a micro cantilever beam, 

whose response to single frequency excitation, measured with a Laser Doppler Vibrometer, contains a 

multitude of harmonics.  The measurements suggest that an oscillatory nonlinear force acts on the 

cantilever when its tip velocity is near maximum during each cycle. 
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1. Nomenclature 

wL = Relative tip deflection, [m] 

y = Absolute tip displacement, [m] 

eb = Base displacement, [m] 

y0 = Initial gap between beam and base, [m] 

ω = Frequency, [rad/s] 

ωn = Natural frequency, [rad/s]  
ζ = Damping ratio, [unitless] 

ftot = Total restoring forces [N]  

fnl = Nonlinear part of restoring forces [N] 

m = Effective Mass [kg] 

c = Damping Constant [N-s/m] 

k = Stiffness [N/m] 

ψn = n
th
 basis function for piecewise-linear function [unitless]  

qn = Coefficient of nth basis function [N or m/s^2]  

N = Number of basis functions in piecewise-linear approximation 

Nf = Number of time instants at which the acceleration, velocity and displacement are measured 

2. Introduction 

Among the multitude of nonlinear system identification methods in the literature, the Restoring 

Force Surface (RFS) method by Masri and Caughey [1] is particularly attractive because it can be used to 

obtain a nonparametric description of the nonlinear forces acting on a system.  This allows one to address 

one of the primary difficulties encountered in nonlinear system identification, finding an appropriate 

mathematical form for the nonlinear system.  The nonparametric restoring force surface can be examined to 

determine what mathematical form is appropriate, often yielding insight into the physics of the nonlinearity.  

One can then parameterize the RFS in order to condense the measured data and so the response of the 

system to other kinds of inputs can be predicted.  This parameterization is typically done using a 

polynomial model for the nonlinear function, yet polynomial models can be numerically ill conditioned 

when their order is high, so it can be difficult to estimate their parameters.  Orthogonal polynomial 

formulations are available that minimize numerical ill-conditioning at the expense of increased complexity 

in their implementation.  Even if these difficulties can be addressed, the coefficients of the polynomials 

remain difficult to interpret physically, especially when their order is high. 

This work describes a method for finding a piece-wise linear approximation to a set of restoring 

force surface data.  This method uses finite-element-type shape functions to assure that the restoring force 

surface representation is continuous, and the shape functions are chosen so that all except for one are zero 
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at each node, so their coefficients are easily interpreted.  Furthermore, the method is very computationally 

efficient, so this method may be useful for condensing a set of measured data even if the model form is 

known a priori; one could use this method to condense the measured data initially and to gain insight into 

the system’s response, and then subsequently fit a model of the desired form. 

Another issue encountered when applying the restoring force surface method is that it can be 

difficult to design an excitation signal that ensures that the response covers the phase plane entirely and 

uniformly.  Sinusoidal excitation signals will almost certainly not result in uniform coverage of the phase 

plane, yet they are attractive for a number of other reasons.  This work addresses the issue by implementing 

the piecewise-linear restoring force method in polar form; the restoring force is parameterized as a 

piecewise-linear function along its orbit in the phase plane. 

Duym, Schoukens and Guillaume [2] previously presented a method that is similar to this work, in 

which they identified a local approximation to a restoring force surface over cells in a rectangular grid.  In 

their work, each cell was defined by a small range of displacement and velocity.  They presented a zero-

order method that estimates the mean value of the restoring force over the cell and a first-order method that 

estimates the mean value and slope in two directions over the cell.  Each unit cell was uncoupled from all 

others, so its mean restoring force (and slopes for the first order method) could be estimated independently 

using only the data that pertained to that unit cell.  Presumably, this approach was adopted to maximize the 

computational efficiency of the algorithm, appropriate for the computing resources of the day.  

Unfortunately, their approach can result in a discontinuous surface, which is undesirable since the restoring 

force surfaces of interest in most problems are continuous.  In their work it appears that they plotted their 

zero order surfaces as smooth surfaces by simply interpolating between the mean values estimated for each 

cell, yet this representation of the data is misleading since a stepwise surface with constant restoring force 

in each cell is what was actually computed.  The error associated with using Duym, Schoukens and 

Guillaume’s stepwise surface can be reduced by shrinking the size of the unit cells, yet in practice this 

inevitably results in some unit cells containing very little data or no data at all, which in turn can lead to an 

artificially rough estimate of the restoring force surface.  Such an approach is sometimes adopted in the 

literature when displaying restoring force data [3].  The true-piecewise linear restoring force method 

presented here allows one to use a coarser grid, so it offers significant advantages when the measured data 
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is not uniformly distributed in the phase plane, and the surface identified is continuous, as one would 

expect for most real systems.   

The proposed methods will be demonstrated on response data from a micro-cantilever beam 

manufactured using the Sandia Ultra-planar Multi-level MEMS Technology (SUMMiT
TM
) manufacturing 

process.  The responses of many of these micro-cantilever beams, measured with a Laser Doppler 

Vibrometer (LDV), have been found to exhibit significant nonlinearity, even when the tip displacement is 

less than 0.5% of the beam length and less than 50% of the beam height.  The nonlinear forces acting on the 

beams appear to be quite complicated, as will be demonstrated later, and neither the mathematical form nor 

the cause of the nonlinearity is known, so the piecewise-linear method is attractive.  This work is part of an 

effort to understand and model the nonlinearity in these MEMS systems.  Worden and Tomlinson [4] and 

Kerschen et al. [5] successfully identified a model for a nonlinear, macro-scale cantilever beam using the 

restoring force surface method.  The authors are not aware of a prior work in which the RFS method has 

been applied to a MEMS system using Laser Doppler Vibrometry. 

A number of tests have been performed as part of this effort.  The tip velocity of the beams was 

measured in near vacuum (~10 mTorr pressure) using a Laser Doppler Vibrometer (LDV) while the base of 

the beams was excited with a piezoelectric actuator.  A second LDV was used to record the base velocity 

simultaneously.  The bandwidth of the base excitation was limited to frequencies around the first resonance 

so the system would behave as a single degree of freedom.  The restoring force surface method was then 

applied with the aide of the piecewise linear surface fitting approach.  This was valuable in the present 

study because the cause of this nonlinearity is not known and tests with sinusoidal excitation show that the 

nonlinear dependence is complex, so traditional methods that rely on capturing nonlinearity with a low 

order polynomial series would be inefficient and possibly suffer from numerical ill-conditioning. 

The following section provides a brief derivation of the restoring force surface method and 

presents the proposed piecewise-linear surface fitting method.  Section 4 discusses the cantilever beam 

system of interest.  Simulation results for a simplified model of the beam are presented in Section 4.1 in 

order to demonstrate the piecewise linear method.  The actual experimental setup, test procedure and results 

are described in Section 4.2.  Section 5 presents some conclusions. 



Page 5 of 24 

3. Restoring Force Surface Method 

The restoring force surface (RFS) method is simply an expression of Newton’s second law for a 

single-degree of freedom, lumped mass system; the net force applied to a point mass is equal to its mass 

times its acceleration.  For example, consider a single degree of freedom system with mass m, damping c, 

and stiffness k, that is acted on by nonlinear forces fnl(x,v) that are a single-valued function of the 

displacement x and velocity v given in the following equation of motion 

 ( ),nl appmv cv kx f x v f+ + + =ɺ  (1) 

where fapp is the external force applied to the system.  All of the displacement and velocity dependent 

forces, or the restoring forces are collected as follows 

 ( ),rest appmv f x v f= − +ɺ  (2) 

where the restoring forces are frest(x,v) = cv+kx+fnl(x,v).  If the applied force and the acceleration are 

measured and the mass is known then the restoring forces can be found from Equation (2) as follows 

 ( ),rest appf x v mv f= − +ɺ . (3) 

The functional relationship between the force and displacement and velocity can be easily 

evaluated if the velocity and displacement can also be measured or estimated.  These are both typically 

estimated from the measured acceleration [6].  

One important consideration here is how the mass is estimated.  A number of researchers have 

discussed methods for identifying the system mass [2, 7], so this will not be treated here.  This is not an 

issue in the application of interest in this work, where base excitation is used, because base excitation 

results in the mass simply scaling the resulting forces.  It will be taken to be unity since our objective is to 

obtain the functional form of the nonlinear forces; finding the precise magnitude of the forces is a 

secondary consideration.  The term “restoring force” will be used to denote the unscaled acceleration since 

this is equal to the restoring forces after scaling by the constant unknown mass. 

One drawback to the RFS method is that it is limited to single-degree of freedom or lumped 

parameter multi-degree of freedom systems [7].  In the application presented in this work, a single mode 

dominates the response so the RFS method is applicable.  Kerschen et al. [6] recently presented an 

excellent summary of these and many other nonlinear system identification algorithms.  The restoring force 

surface method is discussed in more detail in [1, 2, 6-8] and their references. 
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3.1. True Piecewise-Linear Restoring Force Surface 

A true piecewise linear restoring force surface is found by parameterizing the surface using a set of 

local basis functions and then solving for the coefficient of each basis function, analogous to what is done 

in the now ubiquitous Finite Element Method.  Consider a two dimensional restoring force surface f(x,v) 

parameterized by basis functions ψn(x,v) with coefficients qn as follows.  

 

1

( , ) ( , )
N

n n

n

f x v q x vψ
=

=∑  (4) 

A multitude of choices exist for the basis functions ψn(x,v).  Polynomial functions are commonly used. 

However, they can lead to numerical ill conditioning and can be sensitive to noise.  This work concentrates 

on local basis functions since their coefficients qn can be determined in a computationally efficient manner 

and because they do not require that one know the form of the nonlinear restoring force surface a priori. 

For simplicity, the problem of identifying a one dimensional restoring force f(x) will first be 

addressed.   One first defines a set of nodes (xc)n over the range of the function that one wishes to 

approximate.  The spacing between each node and the next node need not be constant, yet it should be 

small enough to capture the variation in the function.  Let ∆xn
-
 and ∆xn

+
 denote the spacing between node n 

and the previous and next nodes respectively.  Each node is then assigned the following shape function. 
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Figure 1:  Sample basis functions for piecewise linear restoring force method for x ∈∈∈∈ (0,1). 

A set of five sample basis functions are illustrated in Figure 1.  Each basis function is simply a 

triangle function that starts at zero at the previous node, rises linearly to one at its node, and then falls off 

linearly between its node and the next.  The basis functions pertaining to the extremes of the restoring force 

surface have similar form but are defined over a range ∆xn, using only one of the two definitions in 
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Equation (5) so that the restoring force is allowed to end with a non-zero value at the extremes of the 

measurement range.  This eliminates any end effects that might contaminate the estimate of the value of the 

force at the end node points. 

 Because non-uniform grid points can be used, one can focus the mesh at points where the restoring 

force is discontinuous or rapidly changing with x.  In the experimental application presented in this work, a 

uniform grid was defined spanning the range of the experimental measurements.  Some of the nodes for the 

grid ended up belonging to basis functions that were defined over a range of x and y that contained little or 

no data.  These points were discarded and the values of ∆xn for neighboring nodes updated, preserving a 

piecewise linear function on a non-uniform grid. 

The coefficients of the basis functions are computed by setting up the following over-determined 

linear system using each measured force value f(xj,yj).  

 ( ) ( ) ( ) ( )
1

1 2i i i N i

N

q

f x x x x

q

ψ ψ ψ
 
  =    
  

⋯ ⋮  (6) 

This equation can be written for each data point f(xi) for i=1…Nf, resulting in an over determined linear 

system of equations that is solved in a least squares sense.  Each basis functions is defined over a local cell 

in the phase plane, so the matrix formed by stacking rows of Equation (6) will be sparse.  Note that the cells 

for adjacent basis functions overlap, so the cells are not completely uncoupled as in [2]  This sparsity can 

be exploited to create a computationally efficient algorithm by forming the normal equations associated 

with the least squares problem as follows. 
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where m and m,n denote the m
th
 element and the m,n

th
 element of the vector A

T
B and matrix A

T
A 

respectively.  These sums can be evaluated efficiently by noting that the products will be zero if the point xi 

to which the force f(xi) pertains is not within the cell affected by the basis function ψm(xj) in the first 

equation and similarly for the pair of basis functions in the second equation.  Furthermore, one need only 
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compute the sum for the data points for which one (or both) of the basis functions is nonzero.  The 

coefficients of the basis functions are then found using the standard formula for the least squares solution. 

 ( ) 1
T Tq A A A B

−
=  (8) 

The matrix (A
T
A) will be invertible if the basis functions are linearly independent and the data sufficient to 

adequately describe each basis function.  The authors implemented the algorithm by discarding any nodes 

that were associated with less than one percent of the average number of data points associated with each 

node. 

The method is easily extended to two dimensions by defining a similar set of basis functions in 

two dimensions 
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 (9), 

where the v-direction basis function ψ(v)
n(v) is obtained by replacing x with v in the previous equation.  The 

basis functions are once again unity at a single node point ((xc)n, (vc)n) on a grid.  In this case the total 

number of basis functions in Equation (9) will be the product of the number of basis functions in x and v. 

In the work presented in Section 4.2, a micro-cantilever beam was excited with base excitation. 

The measured data were the base velocity and tip velocity. The base velocity was sinusoidal with varying 

amplitude. In each period in the steady state, the tip velocity was nearly sinusoidal. As a result, the phase 

plane was populated with data points only in a region close to an orbit. Therefore, a two-dimensional RFS 

on a rectangular grid was not optimal because many of the grid points ended up being in regions of the 

phase space that were devoid of data.  In the following a one dimensional piecewise linear approximation  

is found for: 1) the restoring force, 2) the tip displacement and 3) the tip velocity, all as a function of the 

phase angle of the base velocity.  This information was then used to construct the two-dimensional RFS in 

polar form.  

4. Application 

Figure 2 shows a schematic of the system under study consisting of a cantilever beam attached to a 

moving base.  The beam is excited around its first resonance, so assuming that modal coupling is negligible 
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(as will be illustrated subsequently), it can be approximated as a single oscillator subject to base excitation.  

The oscillator is assumed to be connected to its base by a nonlinear element resulting in the following 

differential equation 

 ( ),nl L L b bm y cy ky f w w ce ke+ + + = +ɺɺ ɺ ɺ ɺ  (10) 

or 

 ( ),rest L Lm y f w w= −ɺɺ ɺ , (11) 

Where y is the absolute displacement of the tip of the beam, c and k are respectively the damping and 

stiffness between the beam tip and the moving base and fnl represents the nonlinear restoring forces that are 

assumed to depend only on the displacement of the beam tip relative to the substrate wL and its derivative 

 L bw y e= −  (12). 

The effective mass of the single degree of freedom representation for the cantilever is m. 

 

Figure 2:  Schematic of the system under study. 

An array of micro cantilever beams was created using Sandia National Laboratories’ SUMMiT
TM
 

process on a silicon wafer.  This work is concerned with a beam that had nominal length of 200 µm, width 

of bbeam = 10 µm and height of 2.5 µm.  It was fixed to the substrate at one end and free at the other.  The 

beam was constructed by depositing two poly-silicon layers of thicknesses 1.5 µm and 1.0 µm over a 2 µm 

layer of sacrificial oxide and then removing the oxide.  Figure 3 shows an optical microscope image of an 

array of beams, including the beam for which results are presented in Section 4.2.  Additional poly-silicon 

layers were placed over the root of the array of beams, as seen in Figure 3.  A 0.3 µm layer of poly-silicon 

was deposited under the root of the beams to allow for electrostatic actuation, causing a 0.3 µm step in the 

profile of the beam since the layers are conformal, as can bee seen in Figure 3. 

x eb 

y 

wL 
Beam 

Moving base 
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Figure 3:  Optical microscope image of micro-cantilever beams. 

4.1. Analytical Model 

A simple model of the cantilever of interest was created and its response simulated to demonstrate 

the performance of the piecewise-linear restoring force surface algorithm.  The beam was modeled as an 

ideal Euler-Bernoulli cantilever beam with nominal dimensions and Young’s modulus E = 170 GPa and 

density ρ = 2330 kg/m3
.  A single-term Ritz model for the beam was constructed using the method in 

Ginsberg [9].  Base excitation of the beam was of interest, so Ginsberg’s method for accounting for time 

varying boundary conditions was applied to the displacement boundary condition at the clamped end of the 

cantilever.  A nonlinear electrostatic attractive force between the beam and substrate was also simulated, by 

applying the following distributed load f(x) to the beam that depends nonlinearly on the deflection of the 

beam from its undeflected position w(x). 

 

( )
2

0

2

0

0.5
( )

( )

beamb V
f x

y w x

ε−=
−

 (13) 

where ε0 = permittivity of free space = 8.85*10-12 [C2/(Nm2
)], V = voltage [Volts], y0 [m] is the distance 

between the beam and the base when the beam is undeflected and bbeam [m] was defined previously.  

Values of V = 7 Volts and y0 = 1.5 µm were used in the following simulation and the damping constant of 

the Ritz model was set to give a linear damping ratio of 0.1%. 

Measurement 
Points 
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The response of the cantilever to sinusoidal base excitation at 73 kHz with 50 nm amplitude was 

simulated using an adaptive Runge-Kutta algorithm.  The simulated restoring was found from the simulated 

beam tip displacement and acceleration and is shown in Figure 4.  The restoring forces of this simulated 

system depend only very weakly on velocity due to the lightness of the damping that was used, so their 

dependence on tip velocity has been ignored. 

Both 2
nd
 and 3

rd
 order polynomial models were fit to the simulated data as a function of tip 

displacement, as well as a piecewise linear model.  The displacement was first scaled to the interval -1 ≤  

wL ≤ 1 prior to fitting the polynomial models in order to minimize numerical ill-conditioning.  The nodes of 

the piecewise linear model were unevenly distributed to concentrate them at large negative displacements, 

where the restoring force is most nonlinear.  The polynomial models disagree with the data in the region 

where the nonlinearity is largest, although the disagreement is less for the 3
rd
 order polynomial than for the 

2
nd
 order one.  The piecewise-linear model follows the data precisely, even in the region where the 

nonlinearity is largest, due to the fineness of the mesh employed in the nonlinear region. 
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Figure 4:  Simulated restoring force for cantilever beam with electrostatic attractive force:  (red 
circles) simulated data, (blue line) 2

nd
 order polynomial fit to simulated data, (black line) 3

rd
 order 

polynomial fit to data, (green line) piecewise-linear fit to data, (green circles) nodes of the PWL 
model. 
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4.1.1. Discussion 

This example illustrates some of the differences between the piecewise-linear restoring force 

surface and the traditional polynomial based RFS.  The polynomial model in this example converges to the 

measured restoring force as its order is increased.  Each polynomial term depends on the entire measured 

data set, so convergence is global and so one may observe regions of the phase space where the 

convergence is not adequate if the polynomial order is not high enough. 

In contrast, the piecewise-linear model is a local model; the value of the piecewise-linear 

approximation at each node depends only on the data immediately before and after each node.  Hence, each 

node tends to give a good approximation of the average value of the measured restoring force in its vicinity.  

As with the finite-element method, one can refine the mesh used in the piecewise-linear approximation 

non-uniformly to better describe local features of a nonlinear force-displacement relationship without 

encountering numerical ill conditioning. 

This simple example has not illustrated the effect of measurement errors on these two methods, yet 

they can have a considerable effect in practice.   For example, signal processing can introduce outliers, or 

the measurement system may distort data near the extremes of the phase plane.  One consequence of the 

fact that the polynomial basis functions are global is that errors in the measured data that affect only a small 

portion of the phase plane can cause global changes in the polynomial model, perhaps even rendering it 

useless.  This problem is exacerbated when numerical ill-conditioning is encountered, since it tends to 

increase the sensitivity of the polynomial model to small changes in the measurements.  On the other hand, 

a localized error in the measurements affects only the corresponding local portion of the model when the 

piecewise-linear algorithm is used. 

4.2.  Experimental Test Procedure 

This section describes the results of tests on the silicon micro-cantilever beams that were described 

previously.  As mentioned previously, electrostatic actuation pads were manufactured under each beam.  

However, the beams were found to respond in a highly nonlinear manner even when no voltage difference 

was applied between the actuation pads and the beams.  For this reason, electrostatic actuation was not used 

in this study in order to focus on the nonlinearity of the beams alone.  This section presents the results of 
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testing the single beam indicated in Figure 3 using base excitation in the absence of an applied electrostatic 

voltage. 

The beams were fastened to a piezoelectric actuator, which was itself fastened to a steel block that 

served as a seismic mass.  The assembly was then placed in a vacuum chamber and the air in the chamber 

was evacuated resulting in a test pressure of about 10 mTorr.  Laser measurements were obtained by 

imaging through a quartz window. 

The base of the cantilever was driven by applying an 82 kHz sinusoidal voltage to the 

piezoelectric actuator with amplitudes ranging from 0-20 Volts, corresponding to near-resonant excitation.  

524288 samples of the beam tip and substrate time responses were recorded, at 5.12 MHz.  The laser 

hardware includes a low-pass anti-aliasing filter with a cutoff frequency of 1.5 MHz. 

The base velocity and the velocity of the tip of the beam were both measured using a Polytec 

Laser Doppler Vibrometer (LDV) focused through a Mitutoyo optical microscope with a 10X objective 

lens.  The velocities were integrated and differentiated using variations on the technique described by 

Smallwood [10].  The restoring force, found using Equation (11) as the derivative of the measured tip 

velocity, will be evaluated as a function of the relative tip displacement wL and its derivative Lwɺ .   The 

relative displacement and relative displacement velocity, wL and Lwɺ , were found by taking the difference 

between the integrated and measured tip and base velocities.  All of the signals were high-pass filtered with 

an 8
th
 order Butterworth filter with a cutoff frequency of 40 kHz to eliminate the spurious drift caused by 

the laser. 

4.2.1. Experimental Results 

The autospectra of the tip velocities of this beam for various excitation amplitudes are displayed in 

Figures 5 and 6.  All of the autospectra are dominated by an 82 kHz sinusoid, and all show multiple 

harmonics, some of whose magnitudes are only 15-20 dB below the fundamental. (The autospectrum is 

squared quantity so a harmonic that is 20dB below the fundamental would have a velocity amplitude that is 

10% that of the fundamental 82 kHz sinusoid.)  Markers are shown for each curve indicating the peak 

nearest to a multiple of the 82 kHz drive frequency.  The base autospectra are not shown, yet in each case 

they were a pure 82 kHz sinusoid with 40 dB or so lower amplitude than the tip.  No harmonics were 
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visible in the base autospectra above their noise floor, which was at about the same level as the tip 

autospectra’s noise floor. 

Figure 5 shows that the bandwidth of the harmonics increases with increasing excitation 

amplitude, continuing out beyond the 1.5 MHz cutoff frequency of the laser decoder for higher excitation 

amplitudes.  Other peaks are also evident at frequencies that are not integer multiples of the excitation 

frequency.  For example, there are peaks at 520 kHz and 1450 kHz.  If the beam were an ideal Euler-

Bernoulli cantilever with nominal cross sectional properties one would expect the first three modal 

frequencies to be 81.1, 508 and 1423 kHz [9].   The peaks at 520 and 1450 kHz are 30-40 dB or more 

below the response at the excitation frequency and about 20 dB below the harmonics at most amplitudes, so 

their effect on the response is expected to be small relative to the nonlinear response.  The 130 nm and 270 

nm tip amplitude cases are the exception having responses at 520 and 1450 kHz that are only 10-15 dB 

below the dominant harmonics.  It was also noted that the restoring force surface data at 130 and 270 nm 

tip amplitudes had the largest variability with respect to the base phase. 
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Figure 5: Autospectra of tip velocities for 130, 270 and 390 nm tip amplitudes. 

(0dB = 0.034 mm/s) 



Page 15 of 24 

 

0 500 1000 1500 2000
-20

0

20

40

60

80

Frequency (kHz)

A
u

to
s
p

e
c
tr

u
m

 (
d

B
)

Autospectra of Tip Velocities

 

 

790 nm

660 nm

530 nm

 

Figure 6:  Autospectra of tip velocities for 530, 660 and 790 nm tip amplitudes.  

(0dB = 0.034 mm/s) 

The restoring force surface values for 2500 samples of each response are displayed in Figure 7, 

with the value of the restoring force indicated by the color of the circles.  Note that the restoring force, 

found using Equation (11), can be evaluated at any pair of values ( ),L Lw wɺ where the response has been 

measured.  One should note that the beam is very lightly damped, and near resonant excitation results in the 

tip motion being about 100 times larger than the base motion, so the base motion has a miniscule 

contribution to the restoring force in Equation (11).  (The actual Q of the beam, found in other tests using 

broadband excitation, is about 5000, corresponding to a damping ratio of ~0.01%.)  Figure 7 shows the 

restoring force only at the points in the ( ),L Lw wɺ  plane through which the response passes during the first 

2500 samples for various excitation amplitudes.  Different rings correspond to the following piezo 

excitation amplitudes 3.3V, 6.6V, 10V, 13.3V, 16.6V and 20V.  These resulted in approximately 130, 270, 

390, 530, 660, and 790 nanometers peak tip displacements.  Multiple data sets are shown for most of the 

amplitudes, illustrating the level of repeatability observed in the measurements.  The measurements at 

amplitudes below 600nm are all highly repeatable, whereas the different trials for peak amplitudes above 

600nm show significant variation.  The orbits traced in the phase plane at each amplitude also differ from 

the pure elliptical motion expected for a linear time invariant system.  This deviation takes the form of 

ripples in the rings at the points where the magnitude of the velocity is largest, although the velocity at 

which the rippling begins changes with differing excitation amplitude. 



Page 16 of 24 

The colored circles indicate a clear linear trend in the restoring force surface for increasing 

displacement (wL), suggestive of an underlying linear stiffness.  At moderately high amplitudes the 

restoring force changes sign a number of times as the cantilever tip executes one vibration cycle.  The 

ripples in the restoring force appear to occur only when the tip velocity is relatively high.  The restoring 

force at the two highest amplitudes is clearly multi-valued, while at other amplitudes the measurements are 

highly consistent.  A multi-valued RFS suggests that the force is altered by effects other than the tip 

displacement and velocity.  We wish to investigate this in more detail by characterizing the RFS at lower 

amplitudes and then comparing it to that obtained when other types of excitations are used.  Without some 

kind of parameterization, the data in Figure 7 could not be used to reconstruct the response of the cantilever 

to other inputs.  This restoring force surface is not amenable to any simple representation, so the piecewise 

linear method presented previously is attractive. 

It is important to note the dependence of the restoring force on both displacement and velocity in 

Figure 7.  The response at each amplitude traces a distorted ring in the phase plane, and the rings are such 

that the large amplitude response cannot be predicted simply by stretching the ring obtained at low 

amplitude or vice-versa.  Hence, it will be necessary to first parameterize the restoring force as a function 

of displacement and velocity for each tip amplitude independently.  The responses at different amplitudes 

can then be stitched together to find a general model for the nonlinearity. 

 

Figure 7:  Scatter-plot of restoring force surface  

One can capitalize on the periodic nature of the data to simplify the system identification 

procedure.  First recognize that the data is periodic with period of 1/fd seconds, where fd is the drive 

RF/mass (m/s
2
) 
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frequency, so the phase variable θ can be constructed from the drive frequency, time (t) and phase delay 

(φdelay) as 

 2 d delayf tθ π φ= −  (14). 

The phase delay is found such that the base velocity is a pure sinusoid.  The phase angle can then 

be wrapped to the interval [0,2π) by subtracting off integer multiples of 2π.  The restoring force, tip 

displacement (wL) and tip displacement velocity ( Lwɺ ) can each then be found as a function of the phase 

angle θ. 

  Figures 8 and 9 show the measured restoring force and piecewise linear fits for 130 and 530 nm 

tip amplitudes respectively.  The top subplot shows the measured restoring force versus phase angle for two 

different data sets (blue and green points) and the piecewise linear fit to the combined set of data (red line).  

The two independent data sets are highly consistent at both amplitudes, and the piecewise linear 

approximation fits them well.  The data at 130 nm amplitude shows considerably more scatter, yet the 

piecewise linear fit follows the mean trend of the data well.  These data sets are representative of the best 

and worse agreement found below 530 nm tip amplitude. 

The bottom two subplots in Figures 8 and 9 show the piecewise linear fits for the relative tip 

displacement (nm) and relative tip velocity (mm/s).  The data from which these fits were derived is not 

shown, yet it was noted that there was considerably less scatter in the displacement and velocity data than 

there was in the restoring force data shown in Figures 8 and 9, so the fit to the velocity was almost 

indistinguishable from the average of the measured relative velocity.  Hence, the velocity traces in Figures 

8 and 9 essentially show the average measured response over one cycle and illustrate the degree of 

harmonic distortion in the measured velocity-time traces, which is quite severe at high amplitudes.  Finally, 

it is apparent that the 130 nm amplitude RFS is not simply a subset of the 530 nm RFS, as one would 

expect if the nonlinearity were primarily a function of displacement; both displacement and velocity 

contribute to the observed nonlinearity. 
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Figure 8:  Restoring force data versus phase angle for two data sets and piecewise linear fit at 
130nm tip amplitude. 

 

Figure 9:  Restoring force data versus phase angle for two data sets and piecewise linear fit at 
590nm tip amplitude. 
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The piecewise linear fits were then used to construct the restoring force surface for a range of 

amplitudes by linearly interpolating between amplitudes at the same phase angle.  Figure 10 shows the 

result for low excitation amplitudes (i.e. using only the piecewise linear fits for 130, 270 and 390 nm tip 

amplitude.)  The surface is highly irregular, especially at high tip velocities where the restoring force 

oscillates within each cycle. 

At low velocities the force appears to be somewhat linear, so this data could be consistent with a 

nearly linear static force-displacement curve.  This is examined in more detail in Figure 11, where the data 

from Figure 10 with tip displacement velocity ( Lwɺ ) near zero is plotted versus wL.  This is essentially a 

zero velocity slice of the surface.  Different markers are used for each tip amplitude so they can be 

distinguished.  The data agree very well with the linear stiffness line (red dash-dot) that one would predict 

for an Euler-Bernoulli cantilever beam with nominal stiffness, density and dimensions (first resonant 

frequency of 81.1 kHz). 

 

Figure 10:  Restoring force surface versus tip displacement and velocity at low excitation 
amplitudes. 
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Figure 11:  Static force-displacement curve for micro-cantilever beam, derived from restoring force 
surface data in Figure 10.  The markers indicate the amplitude of excitation from which each pair of 

data points was derived. 

4.2.2. Discussion 

One convenient feature of sinusoidal excitation is that it allows one to easily detect nonlinearity; 

responses at frequencies other than the driving frequency indicate nonlinearity.  The autospectra in Figures 

5 and 6 show that the system response is clearly nonlinear, and suggest that the nonlinearity is responsible 

for as much as 10% of the velocity response at some frequencies.  It is important to verify that the laser 

Doppler vibrometer measurement system is behaving linearly before attributing this nonlinearity to the 

micro-cantilever beams, otherwise one might be measuring the nonlinearity of the combined LDV-

cantilever beam system.  (If the LDV were in fact nonlinear, such a measurement might be useful for 

understanding why, yet it was not the purpose of this study.)  In order to assure that the measurements are 

correct, the tests were replicated with other laser decoder range settings and identical results were found.  

Also, it was verified that the measured velocities were no higher than 500 mm/s while Polytec’s 

specifications state that the instrument nonlinearity should not exceed 1% for velocities up to 1500 mm/s 

for the range settings that were used.  These observations suggest that the measured responses are not an 

artifact of the laser measurement system.  Also, the response deviates from a pure sinusoid most strongly 

when the velocity is highest, as illustrated in Figure 7; if there were difficulty with the laser measurement 

system, one would expect it to occur at low velocities rather than at high velocities as observed.  These 

observations suggest that the beams may in fact be behaving nonlinearly, even though their tip deflections 

are less than their thickness. 
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Figure 9 shows that the magnitude of the nonlinear forces acting on the cantilever are much larger 

than those of the linear forces at some points in the cycle.  The restoring forces presented in Figures 7 and 

10 are not amenable to any simple force versus displacement model.  Indeed, the autospectrum in Figure 5 

shows more than 19 harmonics, so one might need as many as 19 terms to describe the restoring force 

using a polynomial series.  In fact, the authors initially attempted using a low order polynomial series both 

with the RFS method and with the Reverse Path [11] method and were not able to find a model that fit the 

data even reasonably well.  Higher order polynomial models were impractical due to the computational 

burden they required and numerical ill conditioning.  On the other hand, it was a relatively simple matter to 

fit a piecewise-linear restoring force surface to the data, and this was done very comfortably on a standard 

desktop computer.  Furthermore, the piecewise-linear restoring force surface always tracked the mean value 

of the measurements whereas the polynomial models investigated by the authors always deviated from the 

data wildly at some points in the phase plane.  The piecewise-linear restoring force surface algorithm gives 

a compact and accurate model for the nonlinear restoring forces that could be used to simulate the response 

of the system to other inputs or evaluated to determine the origin of the nonlinear forces. 

When considering the cause of the nonlinearity, there are a few nuances in the data that one should 

note.  First, the restoring force found at 130 nm tip amplitude, shown in Figure 8, shows considerable 

scatter.  It was also noted that the peaks in the autospectra of the velocity in the vicinity of the 2
nd
 and 3

rd
 

natural frequencies of the beam were considerable relative to the nonlinear harmonics at this amplitude 

(and would be even more so in the acceleration).  The presence of the 2
nd
 and 3

rd
 modes in the response 

contaminates the restoring force, and one could have notch or low-pass filtered the data to eliminate the 

effects of these modes, as done in [4, 5].  However, since these modes’ frequencies are not integer multiples 

of the first natural frequency or the excitation frequency, their contributions average to zero over a 

sufficient number of cycles of the input.  These modes appear to have had a smaller net effect on the data at 

higher excitation amplitudes. 

Another interesting observation is that the autospectra in Figure 5 show that the beam responds out 

beyond the 1.5 MHz bandwidth of the laser decoder.  Harmonics beyond the 19
th
 may contain important 

information about the restoring force surface that was not captured.  (In such a case one would expect the 

measurements to reflect a truncated Fourier series type representation for the restoring force surface; the 
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omitted terms may alter the representation of the restoring force surface over the whole range of 

displacement and velocity.)  On the other hand, the harmonics in the autospectra for small tip displacement 

amplitudes (130, 270 and 390 nm) had decayed significantly at 1.5 MHz, suggesting that the restoring force 

should have been adequately captured at these amplitudes.  For this reason, the restoring force surface was 

only displayed for these amplitudes in Figure 10. 

It seems that one important clue to the cause of the nonlinearity in these measurements is its 

velocity dependence.  Figure 11 suggests that the force-displacement relationship is linear at zero velocity.  

On the other hand, Figure 7 shows that for any given amplitude, the response appears to be somewhat 

linear until a certain tip speed is reached, after which the response becomes erratic until the speed again 

falls below that threshold.  The oscillatory nature of the response is reminiscent of a stick-slip phenomenon, 

in which the unmeasured state could be the state of an internal Jenkins element [12].  Somewhat similar 

oscillatory forces are presented in Figure 10a of [3] for a macro-scale system with Coulomb friction, yet the 

oscillations observed there were not as severe nor quite as regular.  Considering the layer-wise 

manufacturing process for these cantilevers, it is perhaps possible that the structure contains regions where 

the interlayer adhesion is weak or has failed that could act as sliding surfaces.  For example, there might be 

regions near the root where some of the sacrificial oxide remains that the poly-silicon beam could slide 

against.  Even so, some of the phenomena observed cannot be explained by a single degree of freedom 

model with Coulomb friction, nor are the authors aware of an alternative sliding friction model that could 

describe this type of response.  For example, neither Segalman’s Iwan element [12] nor the Bouc-Wen 

model [3, 13] are capable of describing this oscillatory behavior at high velocities for a single degree of 

freedom system. 

This paper presents test data from only one beam.  The authors have measured qualitatively 

similar responses from other beams of lengths ranging from 100 - 1500 microns, widths ranging from 10 to 

30 microns and similar thicknesses (1.5-2.5 microns).  Although the cause of the nonlinearity has not yet 

been determined, the piecewise-linear restoring force surface method has proven helpful in condensing the 

measured data and eliminating a number of theories regarding the cause of the nonlinearity.  Efforts are 

underway to develop a mathematical model that recreates the observed behavior.   The authors are also 

investigating the LDV to verify that the manufacturer’s specifications regarding its linearity are correct. 
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5. Conclusions 

A semi-nonparametric extension to the restoring force surface method was presented that creates a 

piecewise-linear approximation to the restoring forces acting on a dynamic system.  The sparsity of the 

problem was exploited, resulting in a highly efficient algorithm for condensing a set of measured data into a 

continuous, piecewise-linear function.  The function found tends to track the mean of the measured data 

very well.  In contrast, the authors have found that this is not always the case when using other standard 

model forms, such as polynomials, for the nonlinearity.  This piecewise-linear method is also able to deal 

with data that is not uniformly distributed in the phase plane much more effectively than the method of 

Duym, Schoukens and Guillaume [2].  A methodology was also presented that can be used to extract a 

polar representation when dealing with sinusoidally excited data.  The piecewise-linear model found using 

the methods presented here is valuable in guiding initial efforts aimed at finding a suitable mathematical 

form for a system or for condensing a set of measured data so that a suitable mathematical model can more 

easily be found. 

The proposed method was demonstrated on a simple analytical beam with a nonlinear electrostatic 

force and using experimental measurements from a micro-cantilever beam that exhibits a complicated, 

velocity-dependent nonlinearity.  The experimental beam was tested in vacuum and was excited by 

applying sinusoidal excitation to its base of varying amplitude.  The restoring force surface (RFS) method 

was used to characterize the nonlinearity because it allows for nonparametric analysis of nonlinear response 

data.  The RFS method provided powerful insight into the dynamics of this system, and a piecewise-linear 

approximation to the nonlinear forces was found that could be used to simulate the response of the system 

to different excitations or initial conditions.  Future work will investigate whether the same low amplitude 

restoring force surface is obtained when different types of excitations, such as swept sine excitation are 

used. 

6. Acknowledgements 

The authors would like to thank Jon Whittwer for helpful discussions regarding the SUMMiT
TM
 

process.  This work was performed at Sandia.  Sandia is a multi-program laboratory operated by Sandia 

Corporation, a Lockheed Martin Company, for the United States Department of Energy’s National Nuclear 

Security Administration under Contract DE-AC04-94AL85000. 



Page 24 of 24 

7. References 

1. Masri, S.F. and T.K. Caughey, A Nonparametric Identification Technique for Nonlinear 
Dynamic Problems. Journal of Applied Mechanics, 1979. 46: p. 433-447. 

2. Duym, S.W.R., J.F.M. Schoukens, and P.A.N. Guillaume, A local restoring force surface 
method. The International Journal of Analytical and Experimental Modal Analysis, 1996. 
11(3-4): p. 116-132. 

3. Caffrey, J.P., et al., A Re-Configurable Test Apparatus for Complex Nonlinear Dynamic 
Systems. Nonlinear Dynamics, 2004. 36(2): p. 181-201. 

4. Worden, K. and G.R. Tomlinson. Experimental study of a number of nonlinear SDOF 
systems using the restoring force surface method. 1991. Florence, Italy: Publ by Union 
Coll, Schenectady, NY, USA. 

5. Kerschen, G., J.-C. Golinval, and K. Worden, Theoretical and Experimental Identification 
of a Non-Linear Beam. Journal of Sound and Vibration, 2001. 244(4): p. 597-613. 

6. Kerschen, G., et al., Past, present and future of nonlinear system identification in 
structural dynamics. Mechanical Systems and Signal Processing, 2006. 20: p. 505-592. 

7. Worden, K., et al., Experimental Identification of Multi Degree-of-freedom Nonlinear 
Systems using Restoring Force Methods. The International Journal of Analytical and 
Experimental Modal Analysis, 1994. 9(1): p. 35-55. 

8. Adams, D.E. and R.J. Allemang. Survey of Nonlinear Detection and Identification 
Techniques for Experimental Vibrations. in International Seminar on Modal Analysis 
(ISMA 23). 1998. Leuven, Belgium. 

9. Ginsberg, J.H., Mechanical and Structural Vibrations. First ed. 2001, New York: John 
Wiley and Sons. 691. 

10. Smallwood, D.O., Integration of Equally Spaced Sampled Data Using a Generalized 
Whittaker's Reconstruction Formula. IEEE Transactions on Acoustics, Speech and Signal 
Processing, 1980. ASSP-28(3): p. 341-343. 

11. Bendat, J.S., Nonlinear System Techniques and Applications. 1998: John Wiley & Sons, 
inc. 474. 

12. Segalman, D.J., A Four-Parameter Iwan Model for Lap-Type Joints. Journal of Applied 
Mechanics, 2005. 72(5): p. 752-760. 

13. Masri, S.F., et al., Identification of the state equation in complex non-linear systems. 
International Journal of Non-Linear Mechanics, 2004. 39(7): p. 1111-1127. 

 
 




