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Uncertainty has always been an important consideration when designing, analyzing and testing engineered 
systems, but computational investigations of the effects of uncertainty are only now beginning to become feasible.  
Often the limiting factor is the computational expense required to assess the influence of uncertainty on the system.  
This work provides an overview of techniques that seek to reduce this expense.  Sampling methods such as Monte 
Carlo Simulation (MCS), Latin Hypercube Sampling (LHS) and Low-Discrepancy Sequences will be discussed, as 
well as reliability methods such as MV, AVM, FORM and SORM.  Response surface approximations such as 
Kriging and Polynomial Chaos will also be discussed, highlighting the fact that all of these uncertainty 
quantification techniques can be understood in the context of a response surface.  The strengths and weaknesses of 
these uncertainty propagation techniques will be discussed and they will be compared by applying them to two low-
order aerospace problems.  The examples illustrate a case where most of the methods are not so satisfactory, and 
another where almost any would perform surprisingly well.  Most of these methods are implemented in the Design 
Analysis Kit for Optimization and Terascale Applications or DAKOTA package, an open source design and 
optimization toolkit that was created by Sandia National Laboratories beginning in 2001, which was used to perform 
many of the analyses discussed in the paper. 

I. Introduction 
LL systems exhibit some degree of unit-to-unit variability, and even if the system parameters were known 
perfectly, the methods used to analyze them introduce some level of approximation.  For example, the mass 

and stiffness of aircraft structures can exhibit significant variability, which may cause flutter to occur below the 
airspeed found by analyzing the nominal structure, or result in limit cycles being observed in regimes other than 
those predicted by theory.  If the system of interest is sensitive to variability, then this can be a critical factor 
limiting design performance.  For example, the mid-frequency acoustic and vibration response of precision space 
structures is very sensitive to uncertainty, to the point that it may become impossible to make meaningful 
predictions without considering uncertainty. 

One universal challenge in probabilistic design is how to characterize the performance of a system in the 
presence of uncertainties without incurring astronomical computational cost.  This work reviews a number of 
methods for propagating uncertainty through design models, and shows how all of these methods can be thought of 
as approximating the relationship between input and output, or the response surface of the system, in some manner.  
This view is important because it provides considerable insight into the performance of these methods, revealing 
their relative strengths and limitations.  The focus here is on uncertainty quantification in the design stage.  A 
number of methods, including Kriging [2], MARS and various flavors of polynomial chaos [3-5] are applied to two 
aeroelastic systems, to illustrate these issues.  The first consists of a two-degree of freedom airfoil with nonlinear 
pitch stiffness [6].  The second treats a Goland wing with three wing-stores that have uncertain mass, inertia, 
positioning and aerodynamic effects.  Many of the techniques are implemented using the DAKOTA package [7]. 

A number of other works have compared uncertainty quantification methods, for example, R. V. Field compared 
some of the surrogate models considered here in [8].  The work by Giunta et. al [9] is also informative.  The purpose 
of this work is not to provide a detailed review of the voluminous literature on this subject but simply to summarize 
the features of each method and to explore their strengths and limitations when applied to two aeroelastic systems. 
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 The following section outlines uncertainty propagation techniques, classifying them as either sampling or 
response surface techniques and pointing out key differences.  While most of what is presented there is available in 
other publications, those who are not immersed the field will find this section helpful.  Section III applies a few 
representative techniques to a two-degree-of-freedom model of an aeroelastic airfoil and a low-fidelity model of a 
Goland wing with three uncertain wing-stores.  The results are evaluated by visualizing the response surface in each 
case, which explains why some methods converge slowly or behave erratically.  Section IV presents come 
conclusions. 

II. Uncertainty Propagation Techniques 
A wide range of uncertainty propagation methods can be classified in two categories: sampling approaches and 

response surface approaches.  The former are commonly used and relatively well understood, so they will be treated 
only briefly.  The focus will be on the latter, especially those which are not always thought of as response surface 
methods, revealing considerable insight into their performance. 

A. Sampling Approaches 
Sampling methods, the most well known of which is Monte Carlo Simulation (MCS), simulate what happens 

when we realize a design.  One draws samples at random from each of the random variables or fields comprising the 
parameters or inputs to a system, and then those values are fed into the analysis model to compute its response.  The 
process is repeated, and one collects statistics on the outputs to quantify, for example, the probability that the 
response exceeds some threshold.  The MCS method is most commonly employed using random sampling (RS), 
where the samples are generated by a quasi-random number generator on a digital computer.  Other possibilities also 
exist, as discussed subsequently. 

The MCS method is versatile, easy to use, and applicable to virtually any uncertainty problem.  Its primary 
drawback is that many samples may be required for some statistics to converge, so the method can be very 
computationally expensive.  For example, if the MCS method is used to estimate the probability that a response 
metric exceeds some critical level, or the probability of failure pf, the coefficient of variation (COV) of the estimate 
is given by the following 

 
( )1 f

f

p
COV

p N
−

=  (1) 

where N is the number of MCS samples used to estimate pf.  To obtain a small COV, or an estimate with high 
confidence, one must use a very large number of samples, especially if pf is low.  For example, if pf =0.0001, one 
needs almost one million samples to obtain a coefficient of variation less than 10%.  On the other hand, other 
statistics converge much more quickly, such as the mean or standard deviation of the response,. 
 One important issue when employing a sampling method is the dispersion of the random samples in the 
parameter space.  This is particularly important if very small N is employed, in which case it is likely that the 
samples obtained will be clustered in the parameter space leaving large regions unsampled.  The Latin Hypercube 
Sampling (LHS) [10, 11] approach seeks to improve on MCS by dividing the parameter space into bins and assuring 
that exactly one sample is taken from each bin.  McKay proved that the LHS estimates have a lower variance than 
those obtained by random sampling if the system and estimator are monotonic [10], but one cannot necessarily be 
assured of superior performance in all cases.  The advantage of the LHS approach over RS vanishes for larger 
sample sizes, but there is ample evidence that it does provide better results if the sample size is small. 
 The random samples generated on digital computers for use in MCS are sometimes called quasi-random 
numbers because deterministic computers cannot produce a truly random result.  Most quasi-random number 
generators tend to give sample sets that are clustered in the parameter space, so the samples converge very slowly to 
the desired distributions.  Numerous works have presented alternatives that improve the uniformity of the quasi-
random samples.  Some of the most common alternatives are Hammersley sequences [12], Halton sequences [13] 
and Latinized Centroidal Voronoi Tessellation (LCVT) [14].  Various works have demonstrated the improved 
stratification of these methods [4].  For example, consider the two sample sets shown in Figure 1.  These were 
acquired by sampling two uniform random variables with a pseudo-random sampling algorithm [15] and using the 
Hammersley algorithm [12].  The top panels show that the pseudo-random sampling method clusters some of the 
samples in the parameter space, while the Hammersley set is evenly distributed over the parameter space.  This is 



 
American Institute of Aeronautics and Astronautics 

 

3

confirmed in the bottom panels, which show histograms of each sample set.  The distribution of the sample set 
obtained by the Hammersley method approximates the true uniform distribution much more closely than that 
obtained by pseudo-random sampling.  On the other hand, the sample set obtained by MCS is certainly plausible, 
because each sample is random so this sample set could very well have been obtained in a real experiment. 

 

 
Figure 1:  (top) Representative sets of N=50 for two uniform random variables generated using 

pseudo-random sampling and Hammersley sampling.  (bottom) Histograms of each random 
variable for both sampling methods. 

   
Discussion 
 Low-dispersion sequences are generally preferred over random sampling, but there are some limitations.  For 
example, section III.A illustrates that the convergence of certain statistics may be misleading.   Another significant 
drawback is that all of these methods produce the entire sample simultaneously, and generally cannot augment a 
given sample set while maintaining their dispersion characteristics.  This is a significant limitation in UQ studies, 
because one often finds that a particular sample set is too small only after analyzing the statistics, so one would like 
to be able to increase its size while re-using the samples that were already obtained. 
 One of the major advantages of the sampling approaches is that they assume virtually nothing about the 
uncertainty problem; they are universally applicable and one can readily compute the expected variance in the 
estimates that they provide.  This is not necessarily the case for the response surface methods presented in the 
following subsection. 

B. Response Surface Approaches 
Response surface methods seek to characterize the relationship between the system’s uncertain parameters or 

inputs and its performance metrics or outputs, or its input-output relationship.  In all of the following, let n denote 
the number of random input variables X in the problem of interest, and m the number of outputs Y of interest.  
Before delving into the details, it is informative to review a simple example.  Figure 2 illustrates a two-dimensional 
problem.  The probability distribution functions of both input variables X1 and X2 are shown in red and blue, which 
define the probability of obtaining any particular combination (X1, X2), as illustrated by the contour-plot in the X1-X2 
plane.  Our system is the function relating the inputs to the output, and is shown as a surface that maps the (X1, X2) 
pairs to values of y (third axis).  One could find the probability of obtaining a value of y in a particular range by 
adding up the proportion of the probability in the X1-X2 plane that is mapped to that range, and hence create the PDF 
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of the output y.  Such an integral is approximated using the MCS method by using a large number of equally 
probable samples, but a number of other approaches exist.  In any event, once the response surface is known, one 
can completely characterize the uncertain output. 

 
Figure 2:  Illustration of 2-dimensional uncertainty propagation.  The random variables X1 and 

X2, whose PDFs are illustrated, define the probability of obtaining a sample at each point in X1-X2 
space.  The response surface relates each sample to the output (third axis). 

Response surface approximations have the form 

 ( ) ( )
1

bn

p p i i
i

Y f c h
=

= =∑X X  (2) 

where Yp is the pth output, X is a vector of random uncertain parameters, hi(x) is the ith basis function, ci is its 
coefficient and nb the number of basis functions.  The approach consists of first selecting a set of basis of functions 
hi(x), sampling the output at least nb times, and then solving a least squares problem with the output and input to 
estimate the coefficients ci.  One can solve the least squares problem if the basis functions are independent on the 
space of the sample set.  Assuming that the least squares solution is well conditioned, the success of the approach 
then depends on how well the basis function set hi(x) approximates the actual surface.  Various sets of basis 
functions have been suggested in the literature, many of which are discussed below.  
1. Polynomial Response Surface 
 The formula for a multi-dimensional cubic polynomial response surface is given in [7] as, 

  (3) 

from which the basis functions can easily be identified.  One can obtain a linear or quadratic polynomial by retaining 
only the first two or first three terms respectively.  The number of coefficients to estimate, and hence the number of 
function evaluations needed to find the surface depends on the order of the polynomial, for example, n+1 
evaluations are needed for a first order polynomial, and (n+1)(n+2)/2 for a quadratic surface.  Polynomial series are 
well known, their ability to describe a function (of one variable at least) is well understood, and although they may 
lead to numerical difficulty at high order, most are aware of this difficulty and many remedies, such as orthogonal 
polynomials, are available. 
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2. Polynomial Chaos Expansion (PCE) 
From the response surface viewpoint, the Polynomial Chaos Expansion is basically a multi-dimensional 

polynomial response surface method [5].  This can be seen by noting the basic equation for PCE [7], which can be 
written as, 

 ( )
1

bn

p i i
i

Y α
=

= Ψ∑ ξ  (4) 

where Yp is the stochastic response of interest, the basis functions Ψi are multi-dimensional orthogonal polynomials 
of the vector of random variables ξ and αi are the constant polynomial amplitudes.  The random input variables, X, 
are related to the uncorrelated, standard random variables ξ by some transformation.  Various forms of polynomials 
may be employed, for example, Legendre polynomials are typically employed when the inputs are uniformly 
distributed.  The first few Legendre polynomials are, 

 ( ) 2 3
1,...,4 1, , 3 1, 5 3ξ ξ ξ ξ ξΨ = − −  (5) 

and it can be shown that the surfaces in equations (3) and (4) can be made to be equivalent for a certain set of 
coefficient values if X=ξ.  If X≠ξ, then a transformation is employed and the PCE surface, though a polynomial in ξ, 
may not be identical to a polynomial of the same order in X.  Orthogonal polynomials also generally lead to better 
conditioning in the least squares problem used to determine the constants αi or ci, but in any event one can think of 
the PCE as a single-valued, polynomial-like response surface. 
3. Kriging and Radial Basis Functions (RBF) 

  Although the theoretical development of the Kriging approach is somewhat more involved, the response surface 
concept still applies, where the basis functions decay exponentially with the distance from the training sites [8].  One 
feature of Kriging models is that they reproduce the values at the training sites exactly; the number of basis 
functions and associated coefficients is equal to the number training points.  One limitation is that the solution for 
the Kriging surface becomes ill-conditioned as the number of training points increases [7], so there may be an upper 
limit on the number of training points that can be employed. 
4. Multivariate Adaptive Regression Splines (MARS) 

The DAKOTA package, which was used in this work, includes the capability to fit a MARS model to a complex 
response function, as described in [7], and this capability was employed for the Airfoil described in the next section. 
5. Relationship to Reliability Methods 

Reliability methods can also be viewed in the context of a response surface, although rather than approximating 
the entire response surface, reliability methods approximate the response surface at a certain response level.  In two 
dimensions, this is the intersection of the response surface with a plane at some value of Y, as illustrated in Figure 3, 
where the intersection or failure surface is represented with a black line.  The most probable point (MPP) of failure 
is also shown.  Reliability methods solve an optimization problem to find the MPP, and then approximate the failure 
surface in some way.  For example FORM and SORM [16], approximate the failure surface using linear and 
quadratic surfaces respectively.  A number of researchers are exploring other methods to parameterize the failure 
surface, such as Kriging-type approximations [17]. 
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MPP

 
Figure 3:  Illustration of Reliability Methods. 

 
The Mean Value (MV) method approximates the response surface using a linear function (a plane in two 

dimensions) centered at the mean values of each of the random variables using the gradient of the response surface 
at that point.  This method is sometimes restricted to Gaussian input variables, in which case the mean and standard 
deviations of the output(s) can be readily computed analytically from the gradient and input standard deviations; the 
output standard deviation only gives a complete description of the output uncertainty if the outputs are all Gaussian.  
This feature is of little consequence because the method could be readily extended to work with other input 
distributions.  The key to the method is really the linear approximation of the response surface.  The mean value 
second order second moment (MVSOSM) method extends the MV method by approximating the response surface 
with a multi-dimensional second order polynomial. 

A number of variants on the MV method have been proposed.  The advanced mean value method (AMV) uses 
the MV method response surface to find the point in the parameter space at which failure is most likely to occur, and 
then uses the gradients at that point to approximate the response surface and compute the probability of failure (or, 
the boundary along which the system just fails, which is the intersection between the response surface and the failure 
boundary.)  AMV+ iterates further until converging on the most probable point of failure.  The First Order 
Reliability Method [16] is also based on a linear approximation of the response surface, but may use a different 
algorithm to locate the most probable point of failure.  These methods have been applied to a variety of systems.  
See, for example, [18-20]. 

Reliability methods are sometimes modified by transforming the input variables to standard Gaussian variables 
(so-called u-space instead of x-space), using, for example, the Rosenblatt transformation [21].  This makes the 
integrals required to compute the probability of failure simpler, although it may also change the response surface 
and hence the failure surface.  This could be beneficial if it makes the actual input-output relationship more linear, or 
have the opposite effect if the surface becomes more nonlinear.  A response surface that is linear in the space of the 
original random variables could become nonlinear due to this transformation if the variables are highly non-
Gaussian. 

One major limitation of these methods is that they require a separate analysis for each output of interest, so they 
are typically limited to cases where one is only interested in the numerical value of the probability of failure by a 
single failure mode.  In that case, the computational cost required to perform MCS can be tremendous and these 
methods may achieve the same accuracy with far lower cost.  On the other hand, some methods, such as the AMV+ 
and FORM methods include an iterative solution for the MPP, which may not converge, in which case one might 
perform thousands of evaluations of the output function and have essentially no useful information at the end.  
Difficulty with convergence is more likely when the limit state function is nonlinear, and when n is high so that a 
high order optimization problem must be solved.  To the best of the authors’ knowledge, none of these methods 
provide a confidence bound on the estimates of the probability of failure.  These methods are implemented in the 
DAKOTA package, and documented in [7]. 
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III. Examples: Uncertainty Quantification of Two Aeroelastic Systems 

A. Nonlinear 2DOF Airfoil of Lee et al. [22] 
The first system considered was initially presented by Lee et al. [22], and has been studied by numerous 

researchers, and examined probabilistically by Millman et al. [6] and Missoum et al. [23].  It consists of a 2DOF 
airfoil in a flow field, whose aerodynamic effects are modeled using Theodorsen’s function [24].  The torsional 
spring supporting the airfoil has a cubic stiffness component βα, which may cause the system to exhibit limit cycle 
oscillation (LCO) near the linear flutter speed if the initial conditions are large enough.  As done by Missoum et al. 
[23], we model the initial pitch angle of the airfoil α0 as a uniform random variable, with 0 ≤ α0 ≤ 0.6, as well as the 
nonlinear stiffness component βα with -4.0 ≤ βα ≤ 0.  This results in a nonlinear stochastic system with quite a 
complex response surface, providing a challenging system to test the performance of the UQ methods.  The primary 
objective is to determine the probability that the LCO amplitude exceeds 20 degrees, in which case the system fails 
to meet its performance requirements, so this is denoted the probability of failure Pf. 

In actuality, such a designation is somewhat artificial because there is usually not a precise level at which a 
system fails; tradeoffs almost always exist in a realistic design problem.  Hence, a more useful objective is to 
determine the probability density function (PDF) or cumulative density function (CDF) of the LCO amplitude, 
because it tells decision makers how likely a response at any given level is.  Because of space limitations, only the 
probability at 20 and 25 degrees will be reported in the following, but the entire CDF could be estimated using each 
of the methods below without any additional evaluations of the airfoil model. 

Each of the response surface methods described in the previous section was applied to the Airfoil to determine 
the probability of LCO exceeding 20 and 25 degrees, using the DAKOTA package [7]; the results are shown in 
Figures 4 and 5 respectively versus the number of training points used to create the response surface.  For each 
method, the probability of failure was predicted using a 10,000 point MCS on the response surface.  The PCE 
method was applied using both N collocation points and N1/2 quadrature points per random variable.  The 
implementation in DAKOTA did not allow more than 10 quadrature points per dimension.  For the collocation 
method, the polynomial order was set such that there were twice as many samples as necessary to estimate the PCE 
coefficients, which was found to be optimal by Hosder [4], so the polynomial orders considered (and associated 
sample sizes in parenthesis) were 2(12), 3(20), 4(30), 5(42), 6(56), 7(72), 8(90), 9(110), 10(132), and 12(182).  The 
quadrature method used a chaos order of N1/2-1. 

Kriging was also employed using both Halton and Hammersley [12] sequences of size N = 10, 25 and 50.  The 
Kriging algorithm was attempted for samples sizes of 75 and larger, but DAKOTA’s Kriging algorithm failed to 
converge so the results were not included here.  The MARS algorithm was also employed using Hammersley 
sampling.  Two Monte Carlo simulations were also performed.  The first used 10,000 samples and is considered the 
truth model.  The probability of failure found by that MCS is shown with a yellow line, as well as the upper and 
lower 5% confidence bounds on that prediction with dashed lines, so one can ascertain with 90% confidence that the 
true probability of failure is between the two bounds.  The second MCS utilized Hammersley sampling with various 
values of N, and the probability of failure and 90% confidence interval for that prediction are also shown as a 
function of N. 
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Figure 4:  Probability that the LCO amplitude exceeds 20o, estimated using various UQ methods 

and with various sample sizes. 
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Figure 5:  Probability that the LCO amplitude exceeds 25o, estimated using various UQ methods 

and with various sample sizes. 
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 Figure 4 shows that the collocation PCE method seems to converge for this problem for large enough N, 
although the convergence is erratic for N<100.  At low sample sizes the error in Pf is about 50%, yet within the 90% 
confidence interval around the MCS result.  On the other hand, the collocation PCE method has apparently not yet 
converged at N = 182 in Figure 5, where the probability of failure is lower, and the convergence is even more 
erratic.  The accuracy of the Kriging surfaces depended strongly on the sampling method; in Figure 4, the surface 
found with Halton training samples was in error by no more than 25% whereas that found with Hammersley samples 
was in error by 50% for all three samples sizes.  On the other hand, Figure 5 shows the opposite trends for the 
Kriging method when determining the probability that the response exceeds 25 degrees.  The MARS surface has 
about 50% error at low sample sizes, and that error gradually decreases as the sample size increases. 

The probability of failure found using MCS with Hammersley samples is generally more accurate than the 
predictions found by the other methods for all of these sample sizes, but those methods’ predictions are always 
within the confidence bound on the MCS prediction when the probability of exceeding 20 degrees is relatively large 
in Figure 4, and usually within the confidence bound in Figure 5 where the probability is smaller. 
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Figure 6:  Response surfaces for non-intrusive PCE method for p = 2 (top left), p = 4 (top right) 
and p = 9 (bottom).  Values of the true response surface are shown with colored circles, and the 

training data are shown with filled black circles. 

 As discussed previously, each of these methods approximates the response surface.  A set of response surfaces 
obtained with a non-intrusive PCE method [5] for p = 2, 4 and 9, s are shown in Figure 6.  Note that we could not 
determine how to export the response surface found by DAKOTA, so this is not the same PCE algorithm used in 
Figures 4 and 5 but a separate one written by the authors based on [5].  The values of the true response function, 
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sampled on a 15 by 15 grid are also show with colored circles, as are the training data with filled black circles, 
although many of these points are masked by the surface.  This figure shows that the PCE polynomial surface 
converges rather erratically to the true response surface, especially near the edges.  The areas in the edges that are 
most inaccurate correspond to regions in which there was not a training sample (Latin Hypercube Samples were 
used here [10, 11]); these areas become smaller as the number of samples increases, yet the surface in these areas 
becomes more erratic as the polynomial order increased.  On the other hand, the surface does follow the trend of the 
data, even at low polynomial orders. 
 Response surfaces for the Kriging Method at N = 10 and N = 50 are shown in Figure 7, with the same surface 
displayed both as a 3D surface and a contour plot. 

 

 
 Figure 7:  Response surfaces for Kriging method with 10 (top) and 50 (bottom) Hammersley 

training points.  The training data are shown with solid black circles. 

The Kriging surface captures the true response surface quite well, even for N = 10, although it is artificially 
oscillatory at N =50.  The Hammersley training samples do not contain a point in the upper left corner for either N = 
10 or N = 50, and hence the response surface falls to a low value in that corner.  The Halton training samples (not 
shown) consistently included a sample in the upper left corner, and hence that surface reproduced the actual 
response surface more accurately. 
 The response surface obtained by MARS using 200 Hammersley training points is shown in Figure 8.  The 
surface follows the training points closely, except near the discontinuity, where a Gibbs type phenomenon is 
observed. 
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Figure 8:  Respnose surface obtained using MARS algorithm with 200 Hammersley training 
samples.  The training data are shown with solid black circles. 

Discussion 
A number of comments are in order regarding these results.  First, it was noted that the PCE converged 

erratically near the edges of the domain; the value at β0 = -4 and α0=0.6 oscillated between many percent too low to 
many percent too high as the polynomial chaos order increased.  When the maximum allowable LCO amplitude was 
20 degrees, the failure region was a large portion of the β0-α0 plane, so this had only a moderate effect on the 
convergence.  As the size of the failure region decreased, Figure 5 showed that the convergence became more erratic 
due to this effect. 
 It was also observed that the Kriging surface obtained with Halton training samples estimated the probability of 
failure much more accurately than the Kriging surface that used Hammersley training samples.  Investigation of the 
response surfaces suggests that the reason for this is that the Halton scheme placed a sample near the extreme, β0=-4 
and α0=0.6, edge of the parameter space, while the Hammersley scheme consistently missed that point.  This should 
not be interpreted as an advantage of one scheme over the other; one does not know a priori what region of the 
parameter space is most critical a priori!  On the other hand, this highlights the difficulty of describing a complex, 
nonlinear response surface with a small number of samples when little is known about its shape a priori. 

B. Goland Wing with Uncertain Stores 
The second system considered consists of a Goland wing with three wing stores, located at the half, three-

quarters and full span of the wing.  Figure 9 shows a schematic of the wing with one illustrative store at the wing tip.  
A similar system was studied by Beran et. al in [25]. 
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Figure 9:  Schematic of Goland wing with a single store at y = (lw+0.5ls).  (Three stores were 

employed in the example considered here.) 

The frequency domain equations of motion for the Goland wing were found by modifying the example in [24] to 
include the three stores, and are given in the appendix.  The parameters used are given in Table 1.  Each of the 
stochastic parameters is uniformly distributed on the interval given.  There are six independent stochastic parameters 
for each of the three stores, so there are a total of eighteen uncertain parameters. 

 
Deterministic Parameters Stochastic Parameters 

 Value Description  Range Description 
lw 20 wing length (ft) cs 10 ±25% store length in chordwise 

direction (ft) 
c 6 wing chord (ft) as [-0.2, 0.2]b store attachment point 
b c/2 wing semichord (ft) ys 10±5%, 

15±5%, 
[19,20] 

spanwise location of store (ft) 

a -0.34 wing elastic axis location (), a*b = 
distance from wing centerline to 
elastic axis (ft) 

ms 0.746 ±25%  store mass (slugs) 

m 0.746 wing mass per unit length (slugs/ft) d [-0.2, 0.2]b store CG Location (ft) relative 
to elastic axis 

Sy 0.447 wing static imbalance per unit length 
(slugs-ft/ft) 

Is 2.2 ±25%  store inertia (slugs-ft2) 

Iy 1.943 wing inertia about elastic axis per 
unit length (slugs-ft2/ft) 

   

E 1.4976e9 wing modulus of elasticity (lb/ft2) bs cs/2 store semichord (ft) (computed 
from cs above) 

G 5.616e8 wing shear modulus (lb/ft2)    
Iea 1.58e-2 area moment of inertia of wing in 

bending (ft4) 
   

J 4.25e-3 area moment of inertia of wing in 
torsion (ft2) 

   

ls 1.0 store width (ft) in spanwise direction    
ρ∞ 0.002378 air density at sea level (slugs/ft3)    

Table 1:  Parameters of Goland wing model with uncertain stores  

The frequency domain equations of motion are given in the appendix and have the form 

 [ ] [ ] { }2 0K M Q qω⎡ ⎤− + =⎣ ⎦ . (6) 
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These were solved using the v-g method [24] to obtain the flutter speed of the system.  Figure 10 shows a v-g 
diagram for the system when the store parameters are at their nominal values.  The blue and green lines correspond 
to the frequencies and damping values of the bending and torsional modes respectively.  The flutter point is 
indicated with a red star, and corresponds to a speed of about 300 ft/s.  The v-g diagram shows that the flutter speed 
is a complicated function of air speed; the equations relating the uncertain parameters to the flutter point of the wing 
are complicated and nonlinear, so it would appear that it might be difficult to describe the flutter speed with a 
response surface. 
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Figure 10:  v-g diagram for Goland wing with nominal store parameters. 

 In order to evaluate the nonlinearity of the response over the range of the uncertain parameters, the model was 
evaluated with each parameter at its nominal value except one, which was varied over its range.  This was repeated 
for each random parameter.  A spider plot was then created showing how the flutter speed depends on each of these 
parameters, and is shown in Figure 11, revealing that the flutter speed varies as much as 60 ft/s due to a single 
parameter.  The most sensitive parameters are associated with the aerodynamics of the stores, their effective lengths 
cs and their attachment points as.  The flutter speed is approximately linear with respect to these parameters, 
although some deviation from linearity is observed, especially for c2 and c3, which correspond to the lengths of the 
stores that are at the ¾ span and the tip respectively.  (Note that the simplistic methodology used here does not allow 
one to discover interaction between the parameters.  More rigorous approaches are available as described in most 
texts on Design and Analysis of Computer Experiments (DACE).) 
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Figure 11:  Spider plot showing variation in flutter speed when each of the wing’s random 

parameters is varied independently. 

 In order to explore the error incurred by using a quasi-linear response surface to describe this system, the PDF of 
the flutter speed was computed using a simple linear model based on the data in Figure 11 at both extremes of the 
parameter ranges and at the nominal value.  The following response surface was employed for the flutter speed Uf., 
where fU  denotes the flutter speed when the parameters are at their nominal values, jθ denotes the nominal jth 

parameter, and θj denotes the jth parameter.  The upper and lower bounds on each parameter, are denoted θj
u
 and θj

l
 

respectively.  This surface simply interpolates on Figure 11 for each of the input parameters.  A total of 37 
evaluations of the simulation code were required to create this surface. 
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 Figure 12 shows the probability density function of the flutter speed calculated in a few different ways.  First, 
1000 Latin Hypercube samples were used to perform a MCS, and a kernel density estimator [26] was then used to 
estimate the PDF from the flutter speeds obtained in these 1000 trials.  The resulting PDF is considered the truth 
model and is shown shaded in blue.  An MCS was also performed on the response surface described above, and the 
estimated PDF is shown shaded green.  That result agrees quite well with the 1000 sample MCS, suggesting that the 
simple response surface model is a good approximation for this system; more than 900 additional samples were 
required to estimate the MCS truth model, so the response surface was much more efficient for this problem. 
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The response surface prediction was also compared with that of a MCS of similar size, 1,000 randomly selected 
subsets of size 37, taken from the 1000 sample LHS-MCS, were evaluated.  Each of these represents a plausible  37 
sample MCS result, and the collection is used to estimate the 95% confidence interval on a 37 sample MCS.  The 
upper and lower confidence bounds are shown with dashed red lines.  A representative PDF estimate from a size 37 
MCS is shown with a solid red line.  There is considerable uncertainty in the PDF estimate based on 37 Monte Carlo 
samples, so one could obtain a PDF that is considerably different from the true one using that technique. 

 
Figure 12:  Probability density function (PDF) of flutter speed estimated using three different 

methods. 

Discussion 
 Although the equations governing this problem are certainly nonlinear, the flutter speed happens to be quite 
linear over the range of the uncertain parameters.  As a result, a low order response surface captures the input-output 
relationship quite well, and one can obtain a fairly accurate estimate of the output statistics using this response 
surface.  The response surface used here required 2*N+1=37 evaluations of the system model.  With such a large 
number of input uncertainties, the computational cost would quickly escalate if the input-output relationship were 
even slightly nonlinear, yet this number of uncertainties is common, and perhaps even small for many problems of 
interest.  It is also important to note that while this system was linear in the flutter speed, it is not linear in other 
outputs of interest, and a poor choice of output parameters may have resulted in a nonlinear response surface. 
 In this example, we have focused on capturing the general character of the output uncertainties, rather than, for 
example, the precise probability of failure by some mode.  It would also be interesting to focus on the tails of the 
distributions and see how the methods compare, but such a comparison is only meaningful if the analysis model is 
thought to be accurate enough to predict the tails, or in other words to predict events that have a very small 
probability of occurring.  For design studies this is often not the case so one must make due with a knowledge of the 
general character of the uncertainty.  One can still profit from knowing, for example, whether the output distribution 
is unimodal or multi-modal, or what the approximate spread in the output is, or which uncertainties are most 
important to the output. 

IV. Conclusion 
Most existing uncertainty quantification techniques seek to approximate the relationship between the uncertain 

input parameters and the outputs of interest using some pre-defined functional form.  This work applied a number of 
methods to two aeroelastic systems, illustrating that the performance of the methods could be ascertained by 
considering how well the true response surface is approximated.  The first example explored the ability of the 
response surface methods to capture a highly nonlinear response surface.  While the methods quickly captured the 
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basic essence of the response surface, a large number of training points was required to accurately describe it in 
detail so that the probability of the LCO amplitude exceeding a certain range could be predicted.  The PCE method 
captured the response surface and converged to the true probability of failure with fewer than 200 samples for this 
two-parameter problem, yet the convergence was erratic for low polynomial orders, or low numbers of training 
samples, and was erratic for all polynomial orders at the extreme edges of the parameter space.  Also, an anomaly 
was observed where the Kriging surface greatly underpredicted the probability of failure when Hammersley 
sampling was used, because that sampling method did not happen to include a sample in a specific region in the 
parameter space that happened to be critical. 

The second example comprised a system which, based on the observations in the first problem, one might expect 
to be difficult to tackle using a response surface because there were many uncertain parameters and because its 
overall behavior was highly nonlinear.  Surprisingly, the analysis revealed that the system was well approximated as 
linear over the range of the uncertain parameters, so even a rudimentary response surface was quite effective.  This 
example illustrates that response surface techniques such as these can result in substantial computational savings in 
cases where one might expect otherwise. 

The most important conclusion that this work has elucidated is that there is great utility in considering the 
response surface employed by the various uncertainty quantification techniques; the critical factor that determines 
whether these response surface methods succeed or fail is how well they are capable of reconstructing the true 
system’s response surface from a small number of samples.  This knowledge can be used to understand when each 
method is most suitable, and to identify potential pitfalls in a given analysis. 

Appendix 
The aerodynamics of the wing were modeled using strip theory and Theodorsen’s function, as derived in [24] for 

a 2DOF wing without stores (result found in equations (9-89) and (9-90)).  Using the kinetic and potential energy 
expressions given in [24], we obtain the following expressions for the j-nth elements of the mass M and stiffness K 
matrices of the wing, and for the dynamic effect of the aeroelastic forces Q. 
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where y is the nondimensional position along the span of the wing such that ylw is the position in feet, and the other 
parameters are given in Table 1.  Ns is the number of stores attached to the wing, Nw the number of bending modes, 
and Nθ the number of torsional modes used in the Ritz description.  These parameters are respectively 3, 1 and 1 in 
the example used in this paper.  The aerodynamic forces are functions of the reduced frequency k and are given by 

 ( ) ( )( ) ( ) ( )20.5 1/ 1 2 2 1/L i k C k k C kα = − + −  (11) 

 ( ) ( )1 2 1/hL i k C k= −  (12) 

 ( ) ( )3/ 8 1/M i kα = −  (13) 

 0.5hM =  (14) 

where C(k) is Theodorsen’s function [24], 
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and Hn
(2) are Hankel functions with ν = n.  (See [27] page 359).  The reduced frequency is defined in terms of the 

frequency in radians ω, the wing chord and the free stream velocity U∞ as 

 
bk

U
ω

∞

= . (16)  
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