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Two time domain force identification methods are compared to the standard frequency 
domain technique in terms of accuracy and sensitivity to errors and a number of extensions 
are presented which improve their accuracy.  Much of the previous in research force 
reconstruction has focused on frequency domain methods, yet there are applications in 
which a real time estimate of the input forces is desired or when time data is available over 
such a short duration that frequency domain methods cannot be applied effectively.  
Furthermore, the challenges inherent to the inverse problem are manifested differently in 
the time domain, so it is possible that accuracy and robustness could improve by considering 
both time and frequency domains.  This work reviews two time domain force identification 
methods, the Inverse Structural Filter (ISF), which is based on a discrete time, state space 
representation of the dynamics, and the Sum of Weighted Accelerations Technique (SWAT), 
which is based upon modal filtering.  Both of these techniques make use of a modal 
description of the structural dynamics, so particular attention is given to identifying an 
adequate model.  Actual test data from a free-free beam is used to compare the methods.  
The application reveals some of the deficiencies of the methods and a number of extensions 
of the ISF method are presented which greatly improve its performance at certain 
frequencies and are perhaps easier to apply than the original ISF method.  The results of a 
Monte Carlo simulation are also presented, illustrating the sensitivity of the methods to 
errors in the modal parameters of the forward system.  The results suggest that an accurate 
description of the forces can be found using the structural response in many important cases, 
especially when the forces have short duration or relatively smooth spectra in the frequency 
band of interest. 

I. Introduction 
here are countless applications in which it is difficult or impossible to directly measure the dynamic forces 
acting on a structure, yet knowledge of these forces is vital for analysis and design optimization.  In some of 

these cases it is possible to measure the response of the structure to the unknown forces.  Numerous previous works 
have studied the feasibility of using a structure’s response to identify the forces acting on it, in effect, using the 
structure as its own force transducer [1].  This inverse problem is usually described as ill posed [1, 2].  Its solution 
can also be very sensitive to small inaccuracies in the data [3-5]; seemingly insignificant errors in the forward 
structural dynamic model can result in large errors in the computed forces.  However, one should be careful and not 
admit defeat to easily; the forward and inverse problems are different and one should expect that different structural 
dynamic characteristics will be important in each. 

The classical approach to force reconstruction is to use a frequency domain technique in which the discrete 
Fourier transform of the measured responses is multiplied by the inverse (or pseudo-inverse) of the FRF matrix, 
yielding an estimate of the forces acting on the system.  Frequency domain force reconstruction has been studied by 
a number of researchers [1, 3, 4, 6, 7]  The recent work by Hundhausen et al [2] provides a comprehensive review. 

It is preferable in some applications to have a time domain algorithm capable of estimating the forces acting on a 
structure in real time.  For example, these forces may be required for system control purposes, or the available data 
may be of such short duration that leakage renders frequency domain processing inaccurate.  Also, the challenges in 
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the inverse problem are manifested differently in the time domain, so it is possible that more accurate or robust 
solutions could be found there.  However, it appears that time domain force identification has not been studied as 
widely as has the frequency domain dual. 

This work evaluates the relative merits of two time domain force reconstruction techniques, the Sum of 
Weighted Accelerations Techinque (SWAT) and the Inverse Structural Filter (ISF) algorithm.  The algorithms are 
tested on data measured from a simple aluminum beam with free-free boundary conditions.  The results obtained by 
the time domain algorithms are also compared to those obtained by the classical frequency domain technique, and 
the relative merits of each method are enumerated. 

Some deficiencies in these methods were noted in these comparisons and a number of modifications to the 
algorithms were explored in an effort to improve their performance.  Many variations on the ISF algorithm were 
explored, some of which were found to significantly reduce errors in the estimated force spectrum at certain 
frequencies.  These alternative methods also simplify the process of generating an ISF system since they rely on the 
forward dynamic model for the system and many well known methods are available for finding such a model.  Thus 
one can avoid the more involved process of directly identifying the ISF from measurements that was used by 
Kammer [5, 8-10].  The more fruitful of the extensions to the ISF method are discussed and some directions for 
future research are highlighted.  The SWAT algorithm was also explored somewhat.  The performance of the 
algorithm is demonstrated as the number of modes in the frequency band of interest varied for a fixed number of 
sensors.  The inclusion of the residual flexibility or out of band modes was also explored and found to improve the 
results somewhat. 

The primary contributions of this work are the following.  First, a detailed evaluation of two major time domain 
force reconstruction techniques using laboratory data.  Second, this work provides a comparison between the time 
domain and frequency domain techniques.  This is especially valuable for the ISF algorithm, which has not 
previously been tested against classical techniques.  Third, the robustness of all of the methods to errors in the modal 
parameters of the forward system is studied through a Monte-Carlo simulation.  Finally, new variations on the ISF 
algorithm are proposed and investigated, which significantly improve its performance. 

The next section presents a review of time domain force identification methods and discusses some details of the 
implementation of SWAT and ISF.  In Section III, these algorithms are applied to data from an aluminum beam, 
which is suspended to simulate free boundary conditions.  Some conclusions are presented in Section IV. 

II. Time Domain Force Identification 
A few researchers have proposed time domain techniques for identifying the forces acting on a structure. Some 

of these are referenced in [2].  For example, Hollandsworth and Busby [11] presented an algorithm in 1989.  Law 
and Chan [12] presented an algorithm for identifying moving loads, i.e. the problem of a car on a bridge.  The work 
here focuses on two time domain techniques:  the Sum of Weighted Accelerations Technique, and the Inverse 
Structural Filter.  Most of the other time domain force identification techniques in the literature are, in essence at 
least, very similar to one of these two [11-13].  These two methods were preferred because they are well developed 
and because elegant theory exists for predicting their performance. 

A. Sum of Weighted Accelerations (SWAT) 
The Sum of Weighted Accelerations Technique (SWAT) was presented by Carne et al [14], although the method 

had been developed previously by Gregory, Priddy and Smallwood [15, 16].  It has been successfully applied to a 
number of systems [17-19].  The technique is based upon the concept of a modal filter.  The rigid body mode 
shapes, along with the mode shapes of the elastic modes in the frequency band of interest are used to construct a 
spatial filter that removes the flexible modes from the response, leaving only the rigid body accelerations.  This 
spatial filter is simply a weighting vector that isolates the rigid body accelerations in the response.  If the mass 
properties of the structure are known, the rigid body accelerations can be multiplied by the mass properties to obtain 
an estimate of the forces and moments acting at the body’s center of gravity. 

In some cases the free, unforced response, which is a linear combination of the elastic mode shapes, can be used 
to generate an adequate spatial filter (i.e. the SWAT-TEEM algorithm [14, 19]).  One limitation of the SWAT 
algorithm is that it determines the equivalent forces and moments that, if applied at the center of mass, would cause 
the same acceleration of the center of mass, and does not identify the spatial distribution of the applied forces.  If the 
location at which the force is applied is known and the number of applied forces is less than or equal to the number 
of rigid body modes, this may be sufficient to determine the individual forces.  Genaro and Rade [13] presented an 
extension of SWAT that can identify the forces at individual response points provided that the number of modes in 
the frequency band of interest exceeds the number of forces desired.  Another limitation of the SWAT algorithm is 
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that it requires that the number of sensors be at least as great as the number of rigid body modes plus the number of 
elastic modes and that the sensors are well placed so that the filtering problem is well conditioned. 

The SWAT algorithm is derived in [14, 17, 18] and explained in the context of the modal filter.  An alternate 
derivation will be summarized here.  We begin by approximating the measured acceleration as a sum of modal 
contributions as follows 

 { } [ ]{ }a η= Φ
 (1) 

where {a} is an N0x1 vector of accelerations at the measurement points,  {η} is an Nx1 vector of modal 
displacements, [Φ] is an N0xN matrix of mode shapes and No and N are the number of measurement points and 
modes respectively.  An NoxNRB weighting matrix [W] is sought that, when multiplied with the measured 
accelerations, extracts an NRBx1 vector of rigid body accelerations {aRB}. 

 { } [ ] { }T
RBa W a=  (2) 

If the rigid body mode vectors are mass normalized and assigned to the leading columns of [Φ], then equation (1) 
can be rewritten as 

 { } [ ] [ ] { }
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where the matrices represent the rigid body and elastic modes respectively and {ηe} is the vector of elastic modal 
coordinates corresponding to the modes in [Φe].  Combining equations (3) and (2) and with the requirement that 
[W]T nullify the elastic modes while extracting the rigid body accelerations yields 
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 (4) 

where ()+ denotes the pseudo-inverse.  One would expect to be able to find a solution that nullifies the elastic modes 
(or extracts the pure rigid body accelerations) whenever the NRB vectors comprising [W] can be extracted from the 
null space of the transpose of the elastic mode matrix [Φe]T.  This will always be possible whenever No ≥ N+NRB.  
One should recall that equation (1) is an approximation because any continuous system has, in reality, an infinite 
number of modes. 

The rigid body accelerations are multiplied by the rigid body mass properties yielding the sum of the forces 
applied to the body.  One should consult the derivations in [14, 17, 18] for further insight.  The derivation there 
sheds some light on the importance of sensor selection by casting the algorithm as a variant of the modal filter.  

B. Inverse Structural Filter (ISF) 
Recently, a time domain algorithm dubbed the Inverse Structural Filter (ISF) was presented by Steltzner and 

Kammer [5, 8-10].  In some incarnations it can be considered a time domain dual to the classical frequency domain 
algorithms.  The discrete time equations of motion are inverted resulting in a dynamic system that takes the 
structure’s response as input and returns an estimate of the forces acting on the structure as output.  Kammer and 
Steltzner have investigated various techniques for overcoming the ill-conditioning [5] and instability [10] that can 
result. 

The basic ISF algorithm can be derived easily beginning with the familiar linear, state-space, discrete time 
representation for a dynamic system. 
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where the state vector {x} is Nx1, the input vector {u} is Nix1, and the output vector {y} is Nox1.   The index k 
refers to the kth time step for which tk = kTs where Ts is the sample increment or time between successive time 
samples.  For structural dynamic systems, the forces acting on a structure at a set of points are typically the inputs, 
and the displacement, velocity, or acceleration measured at a set of points are considered the outputs.  Peeters [20] 
gives a good review of various forms of the state-space equations for continuous and discrete time dynamic systems, 
as well as their relationships to the familiar modal and structural-dynamic (i.e. M,C,K) representations.  It is 
important to note that the discrete time system reproduces the response of its continuous time dual exactly (at the 
sample instants) only if the response obeys the assumption used in deriving the discrete time model.  For example, 
the zero order hold (ZOH) assumption is typically used, which assumes that the input is constant between sample 
instants.  This is an important detail to consider, especially since most of the data acquisition hardware used in 
structural dynamics uses a different (band-limited) assumption.  Fortunately the distinction is not too important so 
long as the sample rate is considerably higher than the maximum frequency of interest. 

Steltzner and Kammer noted that it is possible to use a pseudo-inverse to invert the state space representation in 
eq. (5) as follows 
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where ()+ denotes the pseudo-inverse.  Equation (6) represents a discrete time dynamic system that takes the 
response {y} as input and returns an estimate of the forces {u} acting on the system as output.  This can also be 
expressed as a discrete filter that acts on the sampled response measurements returning a sampled (i.e. ZOH) 
estimate of the forces. 

While Steltzner and Kammer derived the ISF as described above, they did not actually use this procedure to 
implement the ISF.  Instead, they presented an algorithm that computes the Markov parameters of the ISF directly 
from response data [10].  The next section explores the alternative of generating an inverse structural filter from 
modal parameters obtained in a standard modal test using a modal representation of equation (6). 
1. Deriving an ISF from Modal Parameters 

The matrices comprising an ISF system can be computed in a number of ways, a few of which will be explored 
in this paper.  We assume that the Frequency Response Function (FRF) has been measured and fit to a state-space 
modal model according to the following standard definition 
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where ()* denotes the complex conjugate, H(ω) is the FRF matrix at frequency ω, λr is the modal eigenvalue λr=-
ζrωr+ωr(1-ζr

2)1/2, where ζr is the modal damping ratio and ωn the modal natural frequency for the rth mode of 
vibration.  If the mode vectors are normalized as described by Ginsberg [21], then the residue matrices [A]r can be 
defined in terms of the displacement portion of the state space mode vector {ψ}r as follows 

 [ ] T
rdriverresprrA }{}{ ψψλ=  (8) 

where the subscripts denote the mode vector partitioned into the drive and response locations.  If the forces are 
applied at a subset of the response locations, then these can be expressed as 
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where [Fin] is typically a NoxNi matrix of ones and zeros that selects the subset of the response locations at which 
forces are applied.  One can use the Laplace domain representation of eq. (7) to show that the following state space 
system generates the Frequency response function in eq. (7). 
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In the preceding equation, [Λ] is a diagonal matrix containing the eigenvalues in ascending order and the columns 
of [Ψ] contain the mode vectors {ψ}r in the same order as the eigenvalues.  The subscript ‘c’ denotes that these are 
the state space matrices for the continuous time representation, in contrast to the discrete time matrices in eq. (5). 

In many applications one actually measures acceleration.  One can modify the representation in eq. (10) to arrive 
at a state space representation for acceleration measurements by taking two derivatives of the output equation and 
substituting the derivative of the state equation.  The following state space representation results. 
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The new state vector is the derivative of the state vector in eq. (10).  The input vector in eq. (11) is the derivative 
of the applied forces.  Once inverted, the system in eq. (11) will estimate the derivative of the input forces from the 
acceleration measurements.  These estimates must then be integrated numerically to obtain at the input forces. 

A discrete time dual to the system representation in eq. (11) must be obtained in order to generate a discrete time 
inverse structural filter using eq. (6).  The following discrete time representation will exactly reproduce the output of 
the continuous time system at the sample instants, if the input is constant between samples (zero-order-hold (ZOH) 
approximation). 
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Note that because [Ac] is diagonal, the matrix exponential of [Ac] is a diagonal matrix with the discrete time 
eigenvalues zr=exp(λrTs) along its diagonal.  The same discrete time system matrices [A], [B], [C] and [D] can 
be obtained from the continuous time ones using the ‘c2d’ function in Matlab’s control system toolbox. 
2. Improving Performance: Direct Transmission Matrix [D] 

One of the primary challenges with the Inverse Structural Filter method is obtaining a stable ISF.  If any of the 
eigenvalues of the ISF system in eq. (6) are unstable, the estimated forces might tend towards infinity when the ISF 
is applied to the measured responses.  This section presents a few tricks that can help in finding a stable ISF. 

For example, the authors have found that the representation in eq. (12) resulted in an unstable inverse structural 
filter when applied to the beam data discussed in the following section, while a slightly modified discrete time 
representation gave better performance.  The modified representation is obtained by stepping the output forward one 
sample and neglecting the direct transmission matrix [D], resulting in the following delayed state space 
representation. 
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The ISF for this system, generated using eq. (6), estimates the input at time tk from the response at the next time 
instant tk+1.  One can heuristically justify omitting the direct transmission matrix [D] on the grounds that for a lightly 
damped system the real parts of [Λ] and [Ψ] tend to be small, so the real part of the triple [Ψ][Λ][Ψ]T is also 
likely to be small for lightly damped structures and based on less accurately estimated quantities, such as the modal 
damping ratios and the real parts of the state space mode vectors. 
3. Improving Performance: Delayed Multistep ISF (DMISF) 

In [10], Steltzner and Kammer found that it was possible to create a non-causal ISF that was more stable and/or 
more accurate than the standard one.  (The non-causal ISF used future values of the response to estimate the forces 
at a given time.)  In that same spirit, if one can tolerate a delay before the forces are estimated, then it is sometimes 
possible to improve the performance of the ISF using the following method. 

Consider forward state equation (13).  The following modified output equation results after stacking the input 
and output for various time instants. 
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The state equation must be modified slightly to accommodate the new definition of the output and input 
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An ISF can be generated from this system representation that estimates the input at time instants tk to tk+p-1 from 
the output at time instants tk+1 to tk+p.  This can be applied to the output at tk to tNt-p resulting in multiple estimates 
for each of the input forces.  The most important feature of this method is that it sometimes produces a stable ISF 
system when that produced by eq. (13) is unstable.  Furthermore, the examples in the following section will show 
that this method can be slightly more accurate.  This algorithm will be referred to as the delayed, multi-step ISF or 
DMISF. 

C. Frequency Domain Inverse Method 
By far the most common inverse method used is the frequency domain inverse method.  This is based on the 

following relationship between force and response. 

 ( ){ } ( ) ( ){ }
1 1o io iN NN N

X H Fω ω ω
× ××

⎡ ⎤= ⎣ ⎦  (16) 

The use of frequency domain data implicitly assumes that the responses have been measured over a sufficiently long 
time window and transferred to the frequency domain via a Discrete Fourier Transform. 

Typically, the number of output or response locations exceeds the number of force or input locations, so the 
inverse problem is overdetermined.  The forces are obtained by multiplying both sides of the equation by the 
pseudo-inverse of [H(ω)]. 
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The primary difficulty in applying this method stems from the fact that the FRF matrix tends to be dominated by 
a rank-one component corresponding to a single mode near the natural frequencies of a system.  As a result, the 
inverse of the FRF matrix can be ill conditioned near the natural frequencies of the system thus amplifying the effect 
of measurement errors [4]. 

The FRF matrix in eq. (16) could consist of measured data, or could be reconstructed from a modal model for the 
system.  The latter approach was used in the results that follow to facilitate comparison with the SWAT and ISF 
methods.  As a result, both the frequency domain inverse method and the time domain methods are constructed from 
identical data, the modal model for the system. 

III. Experimental Results 
The data presented in this section was taken from a 183 cm long aluminum beam, suspended by bungee cords to 

simulate free-free boundary conditions.  The beam cross section was 2.5 cm high by 3.8 cm wide.  Seven pairs of 
accelerometers were mounted along the length of the beam, spaced 30.5 cm apart.   Each pair contained one 
accelerometer mounted in the vertical direction and one in the axial direction. 

An instrumented hammer was used to excite the beam and record the force imparted.  The measured force and 
response spectra were used to estimate the frequency response function of the beam, which was processed using two 
modal parameter identification algorithms:  the Synthesize Modes and Correlate Algorithm (SMAC) [22, 23], and 
the Algorithm of Mode Isolation (AMI) [24-26].  These returned a set of modal parameters describing the dynamics 
of the beam from 0 Hz to 1500 Hz.  Beyond 1500 Hz the excitation was relatively weak and the FRFs were difficult 
to curve fit.  The modal parameters identified by both of these algorithms were similar.  The results of the AMI 
algorithm were used as described subsequently as input data for the various force identification algorithms.  The 
force identification algorithms differ in the amount of information needed as well as their sensitivity to inaccuracies 
in the data.  For this reason, some additional details regarding the curve fitting procedure will be furnished in the 
following subsections. 

A separate set of data was also taken in which the beam was excited once with an instrumented hammer and the 
response recorded.  A number of force reconstruction algorithms were then applied to the response data, as 
described subsequently, where in each case the reconstructed force is compared to the force measured by the 
hammer. 

A. Sum of Weighted Accelerations Technique (SWAT) 
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The Algorithm of Mode Isolation (AMI) was used to find the modal parameters for the beam.  Figure 1 
compares the measured frequency response function at the drive point with AMI’s reconstruction.  The algorithm 
described in [27] was modified to force a model with real modes on the data.  The measured and reconstructed FRFs 
agree quite well, although the zeros of the FRF at low frequencies have not been identified very accurately.  Figure 2 
shows composite FRFs of the data, AMI’s reconstruction, and the difference between the two.  (A composite FRF is 
defined as the average of the magnitude of all of the FRFs.)  Once again the agreement is quite good, although the 
difference plot does reveal errors at each of the natural frequencies of about one order of magnitude less than the 
measured FRF magnitude.  When complex modes were fit to the data these errors were virtually eliminated, as will 
be illustrated in the following section. 
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Figure 1:  Measured Drive Point FRF H1,1(ω) vs. AMI Reconstruction – Real Modes. 
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Figure 2:  Composites of Measured FRFs, AMI’s Reconstruction and of the difference 

between the two – Real Modes. 



 
American Institute of Aeronautics and Astronautics 

 

9

Figure 3 shows a plot of the Modal Assurance Criterion Matrix or MAC Matrix [28] of the modes identified by 
AMI.  (The MAC between two vectors gives an indication of their linear independence.   A value of 0 indicates 
perfect independence, or vectors that are orthogonal in a Euclidean sense, while a value of 1 indicates that the 
vectors are multiples of one another.)  The off-diagonal MAC values (i.e. the MACs between the different mode 
vectors) are above 0.5 for a number of the mode vector pairs, suggesting that a larger number of measurement points 
may be needed to accurately distinguish the mode shapes from one another. 
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Figure 3:  Plot of MAC matrix between modes identified by AMI – Real Modes. 

The SWAT algorithm can be applied to the measured FRFs resulting in what has been called an FRF of the 
SWAT degrees of freedom or SWAT FRFs [14, 17].  The SWAT FRFs are computed by multiplying the SWAT 
weights with the measured FRF matrix.  Since the measured FRFs represent the response due to a flat, unit force (or 
unit impulse force), the resulting SWAT FRFs should be constant for all frequencies.  Visual inspection of the 
SWAT FRF gives a good indication of the ability of SWAT to isolate the rigid body accelerations of the structure.  
Figure 4 shows the SWAT FRFs for the two dominant rigid body modes present in the data, rigid body translation in 
the vertical direction and rigid body rotation.  The SWAT FRFs are essentially flat up to about 600 Hz.  They clearly 
indicate that one should not apply SWAT (using this sensor set) without first low pass filtering the response data to 
minimize the frequency content to below about 1000 Hz.  Another alternative would be to add more sensors to 
eliminate the modes in the frequency band of interest.   
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Figure 4:  FRF for SWAT degrees of freedom, rigid body translation and rigid body 
rotation (or pitch.) 

Figures 5 and 6 show the force identified by SWAT from the response data for a vertical input force 
(perpendicular to the axis of the beam) at the first degree of freedom.  The response data has been low-pass filtered 
with a cutoff frequency of 1500 Hz.  Recall that the SWAT FRFs indicated that the forces identified by SWAT were 
not likely to be very accurate above 1000Hz.  Higher frequencies were included in the following so that these results 
could be compared with those derived using the ISF and frequency domain inverse methods later.  In practice one 
should always limit the bandwidth of the responses to the flat region of the SWAT FRFs prior to applying SWAT or 
augment the sensor set as discussed previously. 

SWAT identified the sum of the external forces acting on the center of mass of the beam, which includes the 
vertical force at and the moment about the center of mass in this case.  The location of the applied force is known, so 
each of these forces can be considered an estimate of the applied force.  These two estimates were averaged to yield 
a single estimate for the force acting at the 1st measurement point.  Figures 5 and 6 compare this estimated force 
with the measured force in the time and frequency domains respectively. 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-5

0

5

10

15

time (s)

Fo
rc

e

Comparison of Measured and SWAT Force @ Node 1 - Filtered 1500 Hz

F1 meas (filt)
F1 SWAT (filt)

0.021 0.022 0.023 0.024 0.025 0.026

-5

0

5

10

15

 
Figure 5:  Force at point 1 identified by SWAT vs. Measured Force in the time domain, 

both filtered with a cutoff frequency of 1500 Hz.  (Note that the SWAT FRFs indicate that a 
lower cutoff frequency should be used.  A 1500 Hz cutoff frequency was used in this figure to 

facilitate comparison with ISF in the following section.) 
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Figure 6:  Force at Node 1 identified by SWAT vs. Measured Force in the frequency 

domain both filtered with a cutoff frequency of 1500 Hz.  (Note that the SWAT FRFs 
indicate that a lower cutoff frequency should be used.  A 1500 Hz cutoff frequency was used 

in this figure to facilitate comparison with ISF in the following section.) 

The agreement between the measured and identified forces in Figures 5 and 6 is only fair.  Figure 6 shows that 
there is excellent agreement out to about 600 Hz, beyond which the agreement deteriorates.  As one would expect, 
the agreement in the time domain is excellent if both the measured force and the SWAT force are low pass filtered 
with a cutoff frequency of 600 Hz.  This is illustrated in Figure 7. 
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Figure 7:  Force at Node 1 identified by SWAT vs. Measured Force in the time domain.  

The response data was filtered with a cutoff frequency of 600 Hz before applying SWAT.  
The measured force was also filtered for comparison. 

1. Discussion 
It was previously observed that the SWAT FRFs are flat out to about 600 Hz and that the 5th and 6th elastic 

modes occur near 500 and 700 Hz respectively.  Most of the motion for this structure was in the vertical direction.  
With seven accelerometers in this direction and two rigid body modes, one would expect to be able to eliminate only 
five elastic modes.  The off diagonal terms involving the sixth and higher modes suggest that the seven axial 
accelerometers do not provide sufficient additional information to distinguish the sixth and higher modes from the 
first five.  These observations suggest that the SWAT algorithm can have difficulty eliminating modes that are not 
linearly independent in the measurement space. 

It is also interesting to note that the SWAT FRFs in Figure 4 are slowly decreasing even away from the natural 
frequencies.  This correlates with the difference between the measured and identified FRFs in Figures 2 and 11, 
suggesting that it could be due to the residual flexibility of modes above 1500 Hz.  An attempt was made to remedy 
this by extracting the residual flexibility from the measured FRFs and including it as an additional mode shape in the 
calculation of the SWAT weights.  (The residual flexibility has the form UR*ω2 where UR is a constant, see [29] or 
[30].) 

The SWAT FRFs computed including the residual flexibility are shown in Figure 8.  Comparison with Figure 4 
shows that the decreasing trend is somewhat less severe, yet still present.  It was observed that the residual flexibility 
did not entirely account for the increasing/decreasing trends observed in the residual FRFs (the difference between 
the measured and fit FRFs) at high frequency, suggesting that the out of band modes could not be described entirely 
with a residual flexibility term.  Nevertheless, this does seem to confirm the hypothesis that out of band modes are at 
least partially responsible for the trends seen in Figures 4 and 8.  These discussions also highlight the great utility of 
the SWAT FRFs both in providing an a priori indication of the expected accuracy of the identified forces and as a 
diagnostic tool. 
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Figure 8:  FRF for SWAT degrees of freedom, rigid body translation and rigid body 

rotation (or pitch.) including upper residual terms when deriving the SWAT weights. 

B. Inverse Structural Filter 
1. Impulse Response based ISF 

As discussed previously, the authors are not aware of a case in which Steltzner and Kammer [10] used the 
equations in Section II to derive an ISF system from a forward system model.  Instead, they derived a convolution 
representation for the ISF system directly from the measured impulse response (i.e. from the Markov parameters).  
This approach was attempted for this problem using the inverse FFT of the measured frequency response functions 
as primary data.  Steltzner and Kammer suggested trying various non-causal leads to improve the performance of the 
ISF system.  Experimentation revealed that the best results were obtained using a non-causal lead of 5 samples with 
50 terms in the convolution equation.  Figure 9 compares the force identified by this ISF to the measured force.  
During the first 22 milliseconds the ISF force tracks the measured force very well.  At later times the reconstructed 
response becomes highly oscillatory.  Various filter lengths and non-causal leads were investigated, although none 
resulted in better agreement between the measured and reconstructed forces than that shown in Figure 9. 
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Figure 9:  Input force at Node 1 estimated by ISF compared to measured force. 

 
2. ISF Derived from Experimental Modal Model 

An inverse structural filter can also be derived directly from a state space dynamic model as discussed in Section 
II.  A state space model can accommodate a system description containing complex mode vectors (i.e. a non-
proportionally damped system).  To make use of this, the FRF data was curve fit using the state space version of 
AMI [27] to obtain a system model from which an ISF was computed.  Figure 10 compares the measured drive point 
FRF with that reconstructed from the parameters identified by AMI.  Figure 11 displays composites of the measured 
FRFs, AMI’s reconstruction, and of the difference between the two.  Comparison of Figure 11 and Figure 2 reveals 
that the reconstruction based on complex modes agrees much more closely with the measured data than the 
reconstruction based on real modes.  On the other hand, comparison of Figure 8 and Figure 1 shows that the zeros of 
the FRF at higher frequencies do not agree as well as they did when using real modes. 

A low-frequency residual term was used when curve fitting the FRFs to a complex modal model in order to 
describe the rigid body dynamics of the system and improve the fit near the zeros of the FRFs.  A residual term was 
not used when curve fitting the FRFs with real modes, although inclusion of a residual term was later found to 
improve the agreement further for real modes also.  The primary motivation for including this low-frequency 
residual term when fitting complex modes to the FRFs was to assure that the dynamic model used to generate the 
ISF system contained a representation of the dynamics of the rigid body modes.  This was accomplished by 
assigning the real part of the low frequency residual term a very low frequency eigenvalue and including it in the 
state space representation in eq. (11).   When this term was omitted, the forces identified by the ISF contained 
spurious low-frequency components of very high amplitude.  These components could have been eliminated by 
high-pass filtering the data, yet it seems more elegant to simply include the rigid body dynamics in the system 
model. 
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Figure 10:  Measured Drive Point FRF H1,1(ω) vs. AMI Reconstruction – Complex Modes 

with Low-Frequency Residual. 
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Figure 11:  Composites of Measured FRFs, AMI’s Reconstruction and the difference 

between the two – Complex Modes with Low-Frequency Residual. 

The delayed, multi-step ISF method (DMISF) described in Section II.B.3 was also applied to the measured data 
with p=5.  The ISF system was then applied to the measured response data for the beam.  This result was found to be 
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somewhat better than that of the method presented in Section II.B.2, the result of which is shown in the appendix.  
Figure 12 compares the force returned by the delayed ISF with the measured force.  The inverse FFT of the force 
obtained by the frequency domain inverse method (FD) is also shown.  The agreement is excellent, although both 
the DMISF and FD forces show some residual ringing after the force had ceased.  The ringing is slightly more 
severe for the DMISF method. 
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Figure 12: ISF Force, FD Inverse Method Force, and Measured Force in the time 

domain. 

Figure 13 compares the spectra of the force identified by the DMISF to those of the measured force and the force 
identified by the Frequency Domain inverse method (FD).  Markers are also displayed indicating the natural 
frequencies of the forward system (crosses) and the ISF system (circles).  Both the ISF and FD forces show spikes at 
many of the natural frequencies of the forward system.  The ISF force shows large, narrow band deviations from the 
measured force at many of its poles.  Visual inspection suggests that the area under each of the curves is similar, 
indicating that each of the identified forces should impart a similar amount of energy into the structure.  It is also 
interesting that the identified force spectrum follows the trend of the measured force even beyond the 1500 Hz curve 
fit band, even though the modes beyond 1500 Hz were not identified nor used in calculating the applied force. 
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Figure 13:  Measured force, FD Inv. Force and ISF Force using the DMISF method in 

Section II.B.3.  Circles indicate the natural frequencies of the ISF system, while crosses 
indicate the natural frequencies of the forward system. 

3. Discussion 
The results presented in this section show that one can obtain similar estimates of the forces acting on a structure 

using either the time domain Inverse Structural Filter (ISF) method or classical Frequency Domain (FD) inverse 
method.  The most significant difference between the two approaches stems from the poles of the ISF system, which 
are related to the zeros of the forward system.  In some cases the ISF system generated from a set of modal 
parameters may have some unstable poles and be completely useless.  Furthermore, Figure 13 shows that even if a 
stable ISF system is found, the ISF computed forces may be inaccurate at the poles of the ISF system.  Fortunately, 
one is not resigned to failure in these cases.  For example, the techniques described in Section II.B may result in a 
more stable and more accurate ISF system.  A number of other alternatives exist; the possibilities have only been 
highlighted in this paper. 

C. Comparison and Discussion of All Methods 
Figure 14 compares the force spectra identified by all of the methods discussed in this paper.  The spectrum 

identified by SWAT is the smoothest and most accurate below 500 Hz yet it deviates from the measured spectrum a 
fair amount above 500 Hz, underestimating the force by a factor of two at 1400 Hz.  The other methods track the 
force spectrum a little more closely above 500 Hz, yet they show a number of spurious peaks.  If the force spectrum 
was known a priori to be smooth (or of short duration in the time domain) then one could apply windowing or 
filtering to smooth the estimated spectra. 
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Figure 14:  Comparison of forces identified by all methods. 

This study has been limited to a case in which the location of the applied force was known.  It is immensely 
important that we mention that both the ISF and frequency domain inverse methods were highly sensitive to the 
location at which the force was assumed to have been applied.  For example, attempts were made to process the 
same data using the ISF method to extract the forces applied in the vertical direction at the first two measurement 
locations simultaneously.  One would expect to recover the same estimate for the first force as found above and that 
the second force would be zero or near zero.  On the contrary, this produced an unstable ISF and one had to go to 
great lengths find a stable alternative.  Furthermore, even once a stable ISF was found the results were 
disappointing.  These observations suggest that SWAT might often be the algorithm of choice in cases where the 
loads are moving or distributed or their locations are not precisely known. 

D. Sensitivity to Errors in Identified Model 
The sensitivity of all of the methods was studied using Monte Carlo simulation.  The modal natural frequencies, 

damping ratios and residues identified were each perturbed by a uniform random number to span ±0.5%, ±5% and 
±5% respectively of their identified values.  These values are meant to be typical of error bounds encountered in 
modal parameter identification.  The force spectra were then re-identified using SWAT, the delayed ISF and the 
frequency domain inverse method using the perturbed modal parameters to calculate the forces acting on the beam.  
This was repeated for 10 different sets of random perturbations.  The range spanned by the identified forces as a 
function of time and frequency were then stored. 

Figure 15 shows the range of forces identified as a function of time using all three methods.  Each color band 
represents the maximum and minimum force observed at each particular time for the ensemble of ten responses, 
each force-time history corresponding to a different set of modal parameters.  The particular ISF was the delayed 
version of Section II.B.3, which was found to be less sensitive to uncertainty than the standard formulation in 
Section II.B.2.  The SWAT weights used in this study included the real part of the upper residual or residual 
stiffness, which describes the contribution of out of band modes.  The responses used as input data in this study were 
filtered with a cutoff frequency of 1500 Hz in order to limit the contribution of the response above the frequency 
band that was used in system identification.  The time responses all appear to be relatively insensitive to the 
uncertainties in the identified modal parameters.  The SWAT algorithm appears to be the most sensitive to the 
parameter variation, although the cutoff frequency of 1500 Hz is somewhat beyond the maximum usable range of 
the SWAT algorithm, as discussed previously. 
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Figure 15:  Range of forces found versus time for DMISF (sec. 2.2.3), Frequency Domain 

Inverse method and SWAT. 

Figure 16 shows range of the force amplitude spectra of the forces used to create Figure 15 where, once again, 
each solid band represents the maximum and minimum of the ensemble of observed spectra.  The SWAT algorithm 
shows a little more variability at the natural frequencies of the structure and a wider band of uncertainty away from 
the structure’s natural frequencies.  The Frequency domain inverse method and the ISF show similar levels of 
uncertainty, with the largest uncertainties at the structure’s natural frequencies.   The ISF algorithm also exhibits 
relatively large uncertainty at its poles (denoted by circles in Figure 16.)  It was observed that the uncertainty at the 
poles of the ISF system was noticeably smaller for this ISF, which was constructed using the delayed multi-step ISF 
(DMISF) of Section II.B.3, than was that of the ISF in Section II.B.2.  The frequency domain inverse method 
identified force overlays that of the ISF at many frequencies, yet at almost all frequencies where the ISF force is 
hidden it was found to be of equal or very similar amplitude. 
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Figure 16:  Range of forces found versus frequency for DMISF (sec. 2.2.3), Frequency 

Domain Inverse method and SWAT. 

IV. Conclusions 
Under the right conditions, both the SWAT and ISF algorithms can be used to estimate the forces acting on a 

structure in real time.  Each algorithm has distinct advantages and disadvantages. 
SWAT requires a sufficient number of sensors to adequately characterize the spatial nature of all contributing 

modes.  In this application, the MAC matrix showed that the first five modes of the system (spanning 0 to 600 Hz) 
were quite linearly independent.  It was also observed that the force identified by SWAT matched the measured 
force up to about 600 Hz.  However, the nature of the disagreement above 600 Hz suggested that the discrepancy 
could be due to residual effects from out of band modes rather than inadequate spatial filtering.  The most notable 
advantage of SWAT over the ISF and frequency domain inverse method was that SWAT did not require a highly 
precise and complete modal model.  Only the mode shapes of the system were needed; the residual terms, which 
were more difficult to measure, were not as important for SWAT as they were for the ISF.  In this regard, SWAT 
was much more robust than the other methods.  One could obtain reasonable results with SWAT on the first attempt 
so long as the data was low pass filtered to limit the effect of modes outside of the system identification band.  The 
other methods required multiple iterations on the curve fit model before good results were obtained.   Given these 
observations, it is somewhat surprising that the SWAT algorithm was so sensitive to errors in the identified mode 
shapes, as illustrated in Section III.  One would suppose that this sensitivity would decrease if more sensors were 
used, making the mode shapes more independent and thus allowing for improved spatial filtering.  The relatively 
good low frequency performance of SWAT in Figure 16 seems to support this hypothesis. 

The ISF algorithm was much more difficult to apply than SWAT and was sensitive to errors in the zeros of the 
curve fit model.  The force identified in the time domain was erratic or unstable at low frequencies in early attempts, 
when the rigid body dynamics had not been adequately accounted for (using a lower residual term.)  As alarming as 
this discrepancy was in the time domain, it actually covered a relatively narrow band in the frequency domain, so it 
should not be too much of a stumbling block for an expert user.  Once a good, stable ISF system was found, the 
identified force was quite insensitive to variations in the modal parameters that were used to create it.  The impulse 
response based method presented by Steltzner and Kammer was found to estimate the force well at early times, 
although the estimate was contaminated by the dynamics of the ISF filter at late times.  A few alternative methods 
for creating ISF filters from an identified modal model were presented and shown to perform significantly better 
than the impulse response based method.  Additional possibilities that may be of use in other applications have also 
been highlighted. 
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The results presented here illustrate some of the limitations of this type of analysis.  The force spectra found by 
each of the methods had large errors near the structure’s natural frequencies.  The spectra of a force that is of short 
duration will be smooth at frequencies that are much lower than the inverse of the force’s duration.  When this is the 
case the errors near the structures natural frequencies are more of a nuisance than a real problem because they can be 
ignored or corrected by smoothing or windowing.  On the other hand, a force spectrum that has significant 
narrowband components will likely be much more difficult to accurately identify. 

It is often emphasized that the inverse problem is highly sensitive to errors in the parametric model for a 
structure, and thus implied that one should abandon any hopes of obtaining reasonable results.  It is more accurate to 
say that the inverse problem is sensitive to errors in quantities that are not important for some other applications.  
Many applications of experimental modal analysis, such as FEA model validation, may be able to tolerate relatively 
large errors in the natural frequencies and mode shapes of the system under test, leading to much less stringent 
system identification requirements.  On the other hand, the ISF was found to be sensitive to the zeros of the forward 
system and there were nuisance issues associated with the residual mass effects of modes below the frequency band 
of interest.  Control system design and admittance modeling are two more examples of applications that can also be 
sensitive to errors in the estimated zeros of a system.  These applications are certainly more difficult, yet one should 
not give up hope.  More than adequate results can be obtained in many cases, especially if the limitations and 
sensitivities of the methods are understood and accounted for. 

Appendix 

A. ISF System of Section II.B.2 
The method described in Section II.B.2 was used to generate an ISF system from the modal parameters identified 

by AMI.  The spectrum of the force identified by this ISF is compared to the measured and frequency domain 
inverse method forces in Figure 17. 
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Figure 17:  Measured force, ISF force and FD Inv. Force in the Frequency Domain.  

Circles indicate the natural frequencies of the ISF system, while crosses indicate the natural 
frequencies of the forward system. 
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Comparison of Figures 17 and 13 reveals that the DMISF force agrees a little more closely with the measured 
force.  The authors have also found that the delayed formulation sometimes provides a stable ISF when the other 
methods do not and it is somewhat less sensitive to errors in the modal parameters of the identified forward system.  
On the other hand, this method may be adequate in some applications and requires a lower order ISF. 

B. Improving Performance of ISF: Transformed Output 
Another approach for generating a stable ISF stems from the observation that the zeros of the forward system (in 

eq. (12)), which become the poles of the ISF system, depend on the definition of the output vector.  In many cases it 
could be possible to obtain an ISF system with stable poles by using a modified output.  For example, if the 
transformed output 

 [ ]1 1{ } { }new
k ky T y+ +=  (18) 

is used in eq. (13), the ISF system matrix becomes 

 [ ] [ ] [ ][ ]( ) [ ][ ]Â A B T D T C
+⎡ ⎤ = −⎣ ⎦  (19) 

One would like to choose a transformation matrix [T] to influence the dynamics of the ISF system favorably.  
This is similar to the full state feedback pole-placement problem [A]-[B][K], which has been treated extensively, 
with [K] defined as follows 

 [ ] [ ][ ]( ) [ ][ ]K T D T C
+

=  (20) 

State feedback control theory states that the eigenvalues of Â⎡ ⎤
⎣ ⎦  can be placed anywhere in the complex plane 

through suitable choice of the state feedback gain matrix [K] so long as the pair [A],[B] is controllable.  While 
controllability is not necessarily a problem for structural dynamic systems, one cannot necessarily find a 
transformation matrix [T] that yields an arbitrary state feedback gain matrix [K].  Indeed, solving for [T] in the 
equation above results in 

 
[ ] [ ] [ ][ ]( )
[ ] [ ] [ ]( )[ ]

0

0T T T T

T C D K

C K D T

− =

− =
 (21) 

which shows that one can only find a transformation matrix for a given state feedback gain matrix [K] if the term in 
parenthesis has a non-trivial null space.  For example, one can place the poles of the ISF system arbitrarily if the 
number of measurement points No exceeds the order of the forward system N. 

Unfortunately the authors have not found standard pole placement algorithms to be very helpful when the 
number of measurement points is less than the order of the system.  However, they have found cases in which an 
unstable ISF was stabilized through judicious selection of the transformation matrix.  For example, in some cases it 
was possible to find a transformation matrix that minimized the real part of the maximum eigenvalue of the ISF 
system using a Nelder-Mead optimization algorithm (“fminsearch” in Matlab.) 
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