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Abstract

The dynamic response of a radio-frequency micro-electro mechanical system (RF
MEMS) to a time-varying electrostatic force is optimized to enhance robustness to
variations in material properties and geometry. The device functions as an electrical
switch, where an applied voltage is used to close a circuit. The objective is to mini-
mize the severity of the mechanical impact that occurs each time the switch closes,
because severe impacts have been found to significantly decrease the life of these
switches. Previous works have demonstrated that a classical vibro-impact model, a
single degree-of-freedom oscillator subject to mechanical impact with a single rigid

barrier, captures the relevant physics adequately. Certain model parameters are de-
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scribed as random wvariables to represent the significant unit-to-unit variability ob-
served during fabrication and testing of a collection of nominally-identical switches;
these models for unit-to-unit variability are calibrated to available experimental data.
Our objective is to design the shape and duration of the voltage waveform so that
impact kinetic energy at switch closure is minimized for the collection of nominally-
identical switches, subject to design constraints. A voltage waveform designed using
a deterministic model for the RF switch is found to perform poorly on the ensem-
ble. An alternative waveform is generated using the proposed optimization procedure
with a probabilistic model, and found to decrease the mazimum impact velocity by a
factor of two relative to the waveform designed deterministically. The methodology
1s also applied to evaluate a design change that reduces the impact velocity further

and to predict the effect of fabrication process improvements.

Key words: MEMS dynamics, input shaping, nonlinear dynamics, vibro-impact

system, reduced-order modeling

1 Introduction

Radio Frequency Micro Electro-Mechanical System (RF MEMS) switches have
been the subject of study for a number of applications because they can poten-
tially provide very low power consumption, high isolation and greater linearity
in a compact package [1,2]. Unfortunately, current designs for RF switches fail
to achieve the high reliability demanded for many applications. During op-
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eration, an input voltage is typically applied to close an RF MEMS switch,
and the dynamics of the closure event have a significant impact on the perfor-
mance and design lifetime of a switch. This work seeks to model and optimize
the dynamics of an RF MEMS switch while accounting for the considerable

unit-to-unit variability inherent in the switches.

The kinetic energy of a switch scales with its velocity, and when a switch
closes this energy must be dissipated before the switch obtains a stable, closed
state. This was observed experimentally using Laser-Doppler Vibrometry [3];
a switch was shown to bounce on its contacts a number of times before closing.
The voltage signal used to close the switch was then replaced with a sequence
of pulses that was shown to greatly reduce the velocity with which the switch
impacted its electrical contacts and the subsequent bouncing. A high velocity
before impact also can lead to higher deformations and hence higher stresses
in the device during the close event. These observations motivate the use of
shaped voltage waveforms to limit the contact velocities of electrostatically-

actuated MEMS devices.

It has proved difficult to design an actuating waveform that is effective for
an ensemble of RF MEMS switches manufactured using current processes
because there is considerable unit-to-unit variability in the dimensions and
the properties of these switches. This work demonstrates that a waveform
designed to minimize the contact velocity, or provide a soft landing, for the
nominal switch gives poor results when applied to an ensemble of switches
with varying parameters. One must consider random variability in order to
minimize the contact velocity experienced by the ensemble. This can be cast
as a problem of Optimization Under Uncertainty (OUU) or Reliability-Based

Design Optimization (RBDO) [4]. This work presents a procedure that can



be used to optimize the actuating waveform to minimize the contact velocity
experienced by an ensemble of switches. The procedure is also used to explore
alternate designs that reduce the contact velocity further and to study the

effect of reducing the unit-to-unit variation due to the manufacturing process.

One very important obstacle to Reliability-Based Design Optimization (RBDO)
for the switch of interest is the computational cost required. Most approaches
to RBDO require a large number of evaluations of the switch model just
to evaluate its uncertainty. This must then be repeated at each iteration of
the optimization algorithm. The models initially available for the RF MEMS
switch were three-dimensional, finite element models comprising many solid
elements totaling hundreds of thousands of degrees of freedom. These models
were discussed and compared to experiments in [5]. The computation time for
these finite element models is large enough to encumber numerous executions
for iterative algorithms. Tests on the physical switches are also very expen-
sive, especially when testing them to failure, so only point validations of the
analysis models are possible. The models then must adequately predict the
change in the behavior of the switches resulting from changes in a few key

geometrical and material properties.

A number of Reliability-Based Design Optimization (RBDO) methods have
been presented in recent years, most of which are aimed at reducing the compu-
tational cost required to evaluate the function (which may be a finite element
code) that relates the uncertain parameters in a system (here considered the
inputs) to measures of the system’s performance (the outputs). Optimization
under uncertainty methodologies can be classified as Robust Design Optimiza-
tion (RDO) methods or as RBDO methods [4]. The former seek to maximize

deterministic performance while minimizing the sensitivity of the optimum



solution to the uncertain parameters. This is done by including the sensitiv-
ities in the objective function. The RDO procedure is justified for stochastic
systems by noting that the variances of the outputs can be determined from
the sensitivities of the inputs if the output function is modeled using a first
order Taylor series. Hence minimizing the magnitude of the sensitivities to
the inputs tends to minimize the variances of the outputs. RBDO methods
incorporate some form of stochastic analysis to optimize statistical measures
of performance. The stochastic analysis is usually made tractable by assuming
an underlying form, such as a first order Taylor series, for the function that is
being optimized. The First- and Second- Order Reliability Methods (FORM
and SORM) expand upon this concept by first using a nonlinear optimization
routine to find the failure boundary and then compute a Taylor expansion
about that point [6]. One potential drawback to this approach is that the it-
erative search for the most probable point of failure becomes more difficult as
the number of uncertain parameters, and hence the dimension of this iterative
optimization problem, increases. Also, as with most nonlinear optimization
problems, one is rarely guaranteed that global convergence is obtained. Fur-
thermore, one cannot estimate confidence bounds on the results obtained by
FORM or other RBDO methods, even if global convergence is obtained. The
computational efficiency of this class of RBDO methods diminishes if multiple
failure modes are of interest, as is the case in this work, since each typically

requires a separate analysis.

Both classes of methods have been successfully applied to MEMS systems,
even if none has enjoyed broad application. For example, Han and Kwak [7]
used RDO to optimize the design of a MEMS accelerometer and a resonant-

type micro probe by simultaneously minimizing their objective function and its



gradient with respect to the random parameters. Wittwer et al. [8] computed
the first order sensitivities of the force-displacement curve of a bistable MEMS
mechanism to various uncertain parameters and used the computed sensitivi-
ties in an RBDO approach to estimate the variance of the force-displacement
curve. Allen et al. [9], used the FORM algorithm to optimize the design of a
variable capacitance MEMS capacitor. They first validated the FORM algo-
rithm for their application by comparing it to Monte Carlo Simulation (MCS)
and then used it to optimize the design of the capacitor. Allen et al. observed
that the FORM algorithm worked well even though their system was non-
linear, yet all of the uncertain variables in their system were assumed to be
Gaussian with relatively small coefficients of variation. Maute and Frangopol
also used the FORM algorithm as part of an optimization strategy for a MEMS

device [4].

Another class of RBDO methods are based on statistical sampling, the most
common being the Monte Carlo Simulation (MCS) method. The MCS method
is widely applicable and very robust. It is valid irrespective of the form of the
underlying input-output relationship. Furthermore, one can compute confi-
dence bounds on the statistics estimated using MCS, and the relationship
between computational cost and the expected accuracy is clear. Both of these
features are highly attractive for this work, since the uncertainty modeling
procedure cannot be verified either experimentally or analytically. Further-
more, the objective function encountered in this work is expected to be highly
nonlinear due to mechanical impact and the electrostatic force and the uncer-

tainties in the system are large and highly non-Gaussian.

The primary disadvantage of the MCS method is that it may require a large

number of evaluations of the objective function, especially if one is concerned



with the tails of a distribution. As a result, the MCS method is not very
practical unless one has a computationally efficient system model. This work
addresses this by first deriving a simple, computationally efficient model for
the physics of interest from the finite element models using a Ritz-type model
reduction. The effects of key geometrical parameters on the modes of the
Ritz model are captured over the relevant ranges using polynomial series. The
limitations and assumptions made during the model reduction process are
easy to understand and quantify by interrogating the bandwidth of the forces
applied to the system. For example, previous works [3] found that other aspects
of the switch’s performance improved when the input was shaped [10,11] to
limit excitation to higher frequency modes. This would also tend to make the

single mode approximation employed here more accurate.

This paper is organized as follows. We first derive a reduced order model
that provides a good representation of the dynamics of the RF Switch to an
actuating voltage. The objective function and optimization procedure are then
discussed and some results presented. Finally, the effects of design and process

improvement are illustrated followed by some conclusions.

2 RF Switch Model

The RF MEMS switch design of interest is shown in Fig. 1. The switch consists
of a stiff gold plate supported above a rigid substrate by four folded leaf
springs. A 100 nm thick electrostatic pad is adhered to the substrate below
the switch plate to provide electrostatic actuation. When voltage is applied to
the pad, the plate deflects downward and the contact tabs make mechanical

contact with the transmission lines to close the circuit. Dyck et al. describe
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Fig. 1. Schematic of RF MEMS switch.
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Fig. 2. Optical Microscope Image of RF MEMS switch.

the design and characterization of this switch in [12].

2.1 Model Reduction

Experimental measurements on representative switches reveal that the small
amplitude response of the switch is dominated by two modes below 300 kHz
[13]. These modes occur at roughly 20 and 70 kHz, the first of which is similar
to the static deflection shape of the switch in its closed position and the second
primarily involves bending of the leaf springs and relatively little displacement
of the plate. Previous testing also revealed that the contribution of the second
mode could be nearly eliminated by shaping the waveform as shown in Fig. 5.
(A more formal input shaping approach such as those in [10] or [11] has not
been necessary.) Contact forces applied to the switch plate by the waveguide

contacts may also serve to excite the higher modes of the plate, yet these will



be minimal if the velocity of the plate is small enough at impact (i.e., if the
voltage waveform optimization is successful.) These observations suggest that
the switch can be adequately modeled using a one term Ritz series [14]. The
transient response of an actual switch to voltage waveforms was compared to
the response of both a single-degree of freedom model and a three-dimensional
finite element model in [5]. There, it was observed that the first mode motion of
the switch clearly dominates the response. This and other works [3,13,15] have
demonstrated the accuracy and the limitations of the reduced order model for
individual switches, so a detailed validation of the single-degree of freedom
model will not be repeated here. This work is concerned with modeling an
ensemble of nominally identical switches, whose parameters are random due

to manufacturing variation.

Let X (t) denote the displacement of the contact tabs; the equations of motion

are

where M and K denote the effective mass and stiffness of the switch plate, re-
spectively. Our convention is to denote all deterministic quantities with lower-
case letters or symbols and all random quantities with upper-case letters or
symbols. The right hand side of Eq. (1) defines the applied electrostatic force,
where € and a denote the electric permittivity of air and the surface area of the
switch plate, respectively, G is the random gap distance between the switch
plate and electrostatic pad at X = 0, and u(t) is the voltage waveform ap-
plied to the pad. Mechanical impact between the contact tabs and waveguide
is included by introducing the following kinematic constraint

9



_ X(@t) if X(t)<D,
X(t) = (2)

—nX(t~) if X(t7) =D,
where D denotes the random travel distance for switch closure, and 7 € (0, 1]
is the (deterministic) coefficient of restitution. A similar model has been used

to study the dynamic response of a collection of MEMS inertial switches [16].

2.2 Model Calibration

The distributions of random variables in Eqgs. (1) and (2) must be specified
before the model can be used to predict the response of an ensemble of RF
switches. This was done by fitting distributions to experimental observations
of a small collection of nominally identical switches. Many of the parameters
in Egs. (1) and (2) cannot be measured directly, so some effort was required to
obtain them from the measured data. The following experimentally observable
quantities have a significant effect on the dynamics of the switch, and have
been found to exhibit significant variability: elastic modulus of the switch
plate (E), electrostatic gap (G), plate thickness (7') and travel distance (D).
Measurements of these quantities are shown in Fig. 3 (a)-(d). (The modulus
is actually not directly measurable, yet it can be deduced from the pull in
voltage U,; as will be explained.) The model calibration procedure consists
of first estimating probabilistic models of E, GG, T', and D and then relating

these quantities to the parameters of Egs. (1) and (2).

Expert opinion and past experience with the manufacturing process suggest

that the distributions of random variables G and D tend to be skewed to
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Fig. 3. Probability Density Functions of and histograms of available data for:
(a) elastic modulus of plate, (b) electrostatic gap, (c) plate thickness, and (d) travel

distance.

the right. A Beta distribution was fit to the available data for G and D be-
cause its parameters can be chosen so that it describes a slightly skewed yet
bounded distribution. Limited information was available for £ and T', so these
were taken to be uniformly distributed in the interval bounded by £25% of
their nominal values. Past experience with the manufacturing process and its

predecessors suggests that these uncertainties are reasonable and conservative.

These random variables must now be related to the model parameters in
Egs. (1) and (2). The quasi-static voltage at which the switch closes, dubbed
the “pull-in voltage” U, can be related to the model parameters as follows.
The system in Eq. (1) exhibits a snapping phenomenon, in which the linearized
stiffness of the switch becomes negative for sufficiently large voltage u. The
snap through point, found by solving for the position of the switch at which
the linearized stiffness changes sign is X = (/3. Substituting this position

for X in Eq. (1) and neglecting inertia since the pull in tests are performed
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quasi-statically, one obtains the following expression for U,

/|8 KG3
Um'— 277€a- (3)

The three dimensional static finite element (FEA) model discussed in [5] was

used to find the effective stiffness of the switch for various values of the switch
thicknesses. The following polynomial relationship between the effective stiff-
ness of the switch and its thickness and modulus was then fit to the FEA

results for thickness ranging from 5um to 9um
K(E,T)=aET (T —a), (4)

where a; = 3.1458 and as; = 0.027186 are the coefficients of the polynomial
fit. Equation (4) can be substituted into (3) to solve for the modulus in terms
of Up;, T, and G. The four parameters defining the switch, D, G, T' and E are
assumed to be independent, while it is noted that the procedure for determin-
ing F could lead to artificial correlation between them if the measurements or

static Finite Element model contain significant errors.

The thickness and modulus of the switches both determine the effective stiff-
ness of the single degree of freedom model through Eq. (4). The effective mass
is found using the following procedure. A dynamic finite element model was
used to determine the following relationship between the natural frequency of

the switch plate bounce mode f, and the plate thickness and modulus,
fo=VEb (T +b), (5)

where the coefficients by = 0.43613 and b; = 311.79 are valid over the same
range as a; and as. The effective mass can be found using the familiar re-

lationship 2w f = \/K/M, so long as the static stiffness K is approximately

12



equal to the dynamic stiffness of the system oscillating in its bounce mode
only. This assumption was verified by using a Ritz, or mode-based model re-
duction, to find the effective stiffness and mass from the natural frequency
and mode shape of the bounce mode returned by the dynamic finite element
model. The stiffness and mass values thus obtained were compared with those
estimated using the static stiffness and the natural frequency and found to

agree to within a few percent. The equation for the effective mass is

M- K - agT(T—a1)2 (6)
(27 fy)” (2w (T + b))

where the rightmost expression is found by substituting from Egs. (4) and
(5). Histograms of M and K, generated from 1000 samples of the independent
random variables D, G, T' and F, are shown in Fig. 4 (a) and (b) respectively.
Note that, by Eq. (6) and (4), M and K are dependent random variables.
Samples of D, G, K and M are used to perform Monte Carlo simulations of

Egs. (1) and (2).

A value for the coefficient of restitution is also required to simulate the RF
switch. This coefficient was difficult to obtain because expensive dynamic tests,
using the methods in [3], are required to estimate its value, whereas the other
parameters were determined using static and dimensional tests. Sensitivity
studies were performed to asess the influence of the coefficient of restitution
on the optimization procdure described in the next section. The optimum
close waveform was not found to be particularly sensitive to the coefficient of
restitution, yet the coefficient of restitution did scale the close time. This scal-
ing effect was essentially independent of the shape of the actuation waveform.
Limited experimental data and the 3D Finite Element model, both of which

were described in [5,3,13] were used to estimate a realistic value for the coeff-
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Fig. 4. One thousand sample histograms and PDF estimates of correlated variables
(a) effective mass and (b) effective stiffness, generated from the distributions shown

in Figure 3.

cient of restitution by comparing measured responses with those predicted by
the 1D and 3D models and observing the effect of the coefficient on the height
with which the switches rebound. The limited data suggested that a value
of n = 0.5 was reasonable, so this was used in the studies that follow. This
coefficient could have also been considered a random variable and included in
the uncertainty model, yet this was not done because the optimum waveform
did not appear to be sensitive to its value and because accurate experimental

measurements on which to base an uncertainty model were not available.
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3 Optimization
3.1 Performance Metrics

The objective of waveform optimization is to minimize the impact velocity
of an ensemble of RF switches with random parameters while maintaining
acceptable time to closure. The maximum contact velocity V for a given switch
is defined as the maximum velocity X (¢) at the instants t = ¢,k = 1,2, ...

just before the switch rebounds from the contacts,
V=X (8] Y

The contact velocity for the ensemble was minimized by minimizing the ve-

locity v, of the switch at the 10% upper quantile of V' defined as
PV >uv,) =0.1. (8)

The velocity v, represents the impact velocity exceeded by only 10% of the
the ensemble and will be referred to as the upper velocity throughout this

work. The upper velocity is estimated as
vy = F71(0.9), (9)

where F' is an approximation for the cumulative distribution function of V'

17].

An optimum waveform must also ensure that the probability p,. of a switch
remaining unclosed after the voltage is applied is small. This probability was
approximated as the ratio of the number of switches that did not close within

250us to the total number of switches used in the MCS. The following objective
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function accounts for both impact velocity and acceptable closure time and

was used in the following section to optimize the voltage waveform

g = Uy + C1Pne- (1())

The relative importance of contact velocity and failure to close is specified
by the constant ¢; > 0. This constant was adjusted until the desired balance
between the number of unclosed switches and the time required to close the
switches was achieved. A value of ¢; = 0.0025 cm/s gave a reasonable balance
between these objectives, and will be used in all of the subsequent results. One
might wish to modify this, depending on the details of screening, packaging,

etc... for the application of interest.

3.2 Optimization Procedure

A computational routine was created to solve the equation of motion, Eq. (1),
subject to the constraint in Eq. (2) using an adaptive Runge-Kutta time in-
tegration routine. The equation of motion was solved for 200 independent
realizations of the random variables D, G, K and M sampled from the distri-
butions described previously. The upper velocity v, and the probability of a
switch not closing p,,. were estimated for each Monte Carlo simulation, yield-
ing a single value for the objective function g for each MCS via Eq. (10). The
Monte Carlo simulation was repeated for various voltage waveforms in order

to find the voltage waveform that minimized Eq. (10).

Once an upper velocity has been estimated, one can ascertain with 95% con-
fidence that the actual probability P...(V > v,) of exceeding the estimated

upper velocity v, is bounded by P.g; — a < Piye < Pogt + a [17]. The width of

16



the probability range is defined by a, where

Pest(l - Pest)
=196y ————= 11
a N ) ( )

and N is the number of samples in the Monte Carlo Simulation. N = 200 was
used in all of these simulations to give a < 0.05 when the estimated probability

P..; is near its nominal value of 0.1.

The voltage waveform consists of a collection of pulses where each pulse was de-
fined by four parameters in order to reduce the dimension of the optimization
problem. These parameters are illustrated in Fig. 5 for a two-pulse waveform.
Each pulse u( is parameterized by its start time ¢, rise time (), peak time

t) and peak voltage u; as follows

u(t) = ﬁv:uz u (1) (12)
=1
1 — Lcos <7rt;§.%”> t@ <t < t® 410
, 1 t0 10 <t <0 4 ¢0) 4O
U(Z) (t) (1) _4(9) . . ) . ’ . . (13)
1 —1Lcos (H‘tt()‘t) £t 40 10 <t < 10 4 260 4 ¢
0 otherwise

The fall time of each pulse is identical to its rise time. The rise and fall of
each pulse are shaped in order to limit excitation of higher frequency modes.

The start time of the first pulse t!) is set to zero. Egs. (12) and (13) are a

17
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Fig. 5. Sample actuation voltage waveform and parameter definitions.

generalization of the pulse/coast waveform used in [5].

Initially, we restrict the analysis to waveforms with two pulses. The optimiza-
tion procedure was simplified by first considering each pulse independently.
The purpose of the first pulse is to bring the ensemble of switches near to the
closed position with minimal velocity. Because of the nonlinear dependence
of the force applied to the oscillator on (G — X (t))~2, one would expect that
longer duration forces will tend to increase the width of the distribution of the
ensemble displacement and velocity. For this reason, the voltage of the first
pulse was set at u; = 150 V, which is near the maximum allowable voltage,
so its width could be minimum while imparting the necessary amount of en-
ergy to the switch. The rise time for this pulse was set at tﬁl) = 4 us, which
was found previously to be the fastest rise time that could be used without
exciting higher modes of the switch. Its width was found by applying only the
first pulse to the ensemble and increasing its width from zero (with the other

parameters fixed) until about 5% of the switches impacted the contacts.

Once the peak time of the first pulse had been determined, Monte Carlo

18



analysis was performed for various values of t®) t?) and ws, typically four
values of #2) and three values each of the other two, in order to obtain starting
values for optimization. The set of parameters among this small group that
minimized the cost function were then used as starting values for a Nelder-
Mead simplex algorithm (Matlab’s ‘fminsearch’) [18]. This algorithm varied
the values for tz(}), t@ +? and wu, until the objective function defined by
Eq. (10) was minimized. This typically entailed 100-200 runs of the Monte
Carlo simulation and improved the mean and upper contact velocities by about

1 — 2 cm/s compared to the starting values.

The DIRECT algorithm in [19] was also applied to this problem in an effort to
perform the optimization in a single step. The DIRECT algorithm is a global
optimization algorithm that samples a cost function over the range of feasi-
ble input parameters, concentrating samples in the regions of the parameters
space that give the best results until an optimum is obtained. Unfortunately,
when applied to this problem it failed to obtain an optimum input waveform
after 350 evaluations of the Monte Carlo simulation, so it was not used in the
studies discussed in the next section. Instead, the simple method comprised of
exhaustive search to find starting values followed by Nelder-Mead optimiza-
tion that was just described was used. However, the DIRECT algorithm was
helpful in finding optimum parameters for a three pulse waveform, albeit at
significant computational cost, because there were too many unknown param-
eters to use the simple procedure described previously to obtain good starting
values. Unfortunately, the three pulse waveform did not significantly reduce
the contact velocity relative to the two-pulse waveform, and it was significantly

more difficult to optimize its parameters, so it was abandoned.
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4 Results

The following subsections demonstrate the performance of the ensemble of
RF switches to a number of different waveforms. In Section 4.1, we design
the input waveform using a deterministic model for the switch. As expected,
poor performance is achieved; this scenario is presented only to illustrate what
happens when we ignore the unit-to-unit variability among the MEMS devices.
The input waveform is optimized in Section 4.2 assuming the unit-to-unit
variability observed among the collection of RF MEMS devices is represented
by the calibrated probabilistic models described in Section 2.2. Significant
improvements over the results in Section 4.1 are obtained. An alternative
design for the switch geometry is considered in Section 4.3, and the shape
of the input waveform is optimized for this modified switch design assuming
identical descriptions for the unit-to-unit variability. Lastly, in Section 4.4,
we quantify the potential cost benefit of improving the repeatability of the

fabrication process (decreasing the unit-to-unit variability).

4.1 Current Design: Input Optimized using Deterministic Model

Before presenting the results of the waveform optimization under uncertainty;,
it is informative to examine the response of the ensemble of switches to a
waveform that was designed using a deterministic model for the switch. A de-
terministic model for the switch was created by replacing the random variables,
D, G, K and M, with their mean values E[D] = 2.43 um, E[G] = 3.68 um,
E[K] =65.3N/m and E[M] = 3.41 ug. A waveform was then designed to give

zero contact velocity for this deterministic model using the method in [13].
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The waveform is a single pulse that brings the deterministic switch to zero
displacement with zero velocity, followed by a second pulse of lower amplitude
that holds the switch in a closed position. This waveform was then applied to

the ensemble of switches and the results are shown in Figures 6 and 7.

Figure 6 displays the voltage waveform w(t) and the displacement X (¢) and
velocity X (t) response of the ensemble of switches (defined by the distributions
shown in Fig. 3) when this deterministically designed waveform is applied. For
clarity, the displacement of each switch in the ensemble is shifted in Fig. 6 such
that zero displacement corresponds to the closed position, so the switches start
with shifted displacements equal to their random travel distance D (between
2.3 and 2.7 pm). The contact velocities are clearly highest for the switches that
impact the substrate first; these tend to rebound from the contacts, finally
closing at about 50 us with maximum contact velocities as high as 50cm/s.
A smaller percentage of the switches do not close due the initial pulse, yet
are finally attracted by the hold pulse after about one cycle (recall that the
natural frequencies of the switches are about 20 kHz), closing after 60 — 100 s

with moderate contact velocities.

Figure 7 shows a histogram of the maximum contact velocity V' for the ensem-
ble, defined in Eq. (7). A small fraction of the switches close with maximum
contact velocity less than the target of 10cm/s; most have much higher con-
tact velocities. Ninety percent of the switches close with a contact velocity
less than v, = 42.6cm/s while the mean contact velocity for the ensemble is

24.7cm/s.

By way of comparison, previous analysis with an unshaped waveform (where

the actuating voltage jumps from 0 to 100 V at ¢ = 0 and remains at that
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Fig. 6. Current Design with Deterministic Model: Voltage waveform optimized for

deterministic switch model and the ensemble displacement and velocity response.

voltage thereafter) resulted in upper and mean contact velocities of v, = 40.7
and 34.1cm/s respectively. The waveform in Figures 6 and 7 that is optimum in
a deterministic sense actually gives a higher upper velocity than an unshaped
waveform when applied to the ensemble of switches with random parameters.
The contact velocities obtained using either of these waveforms are clearly

unacceptable.
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4.2 Current Design: Input OUU

The procedure described in Section 3 was applied to optimize the voltage wave-
form under uncertainty (OUU) using the probabilistic model for the switch
that was described previously. Figure 8 displays the optimum voltage wave-
form w(t) and the resulting ensemble response. In contrast to the results shown
in Figures 6 and 7, we no longer ignore the effects of unit-to-unit variability
when optimizing the waveform under uncertainty. The second pulse for the
OUU waveform begins much earlier and rises much more slowly than that for
the deterministically designed waveform. One would expect these features tend
to increase the contact velocity for the average switch (deterministic design),
yet the following figures reveal that they greatly reduce the contact velocity of
the ensemble. As was the case for the deterministically designed waveform in
Figure 6, a small percentage of the switches are not drawn in by the hold pulse,
and finally close after 70 us or more. However, the majority of the switches
close within 50 us with contact velocities below 25cm/s. A number of switches
in Figure 6 were observed to rebound and escape the pull of the electrostatic

force for a cycle, yet this is not the case for the optimum waveform in Figure 8.

Figure 9 shows a histogram of the maximum contact velocity V' in Eq. (7) for
the ensemble of 200 switches when the optimum voltage waveform in Fig. 8
is used. Ninety percent of the switches close with a contact velocity less than
v, = 19.7cm/s while the mean contact velocity for the ensemble was 15.3cm/s.
This represents a substantial improvement over both the waveform designed
using a deterministic approach and the unshaped waveform. It is interesting to
note that this waveform is not optimum in a deterministic sense since it does

not result in minimum contact velocity for the switch with average parameters,
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yet the maximum contact velocities experienced by the ensemble have reduced

significantly.

As discussed in Section 3, a three pulse waveform was also found using the
DIRECT algorithm. It gave upper and mean contact velocities of 18.8 and
14.0cm/s, so the improvement obtained by adding a third pulse did not merit

the additional complexity that it introduced.

Discussion

One can verify that the improvement in performance observed here is sta-
tistically significant. For example, one can compute a confidence bound on
the probability of obtaining a contact velocity that is higher than a certain
limit using the method in [17]. Applying this to the results of the MCS, one
can ascertain with 95% confidence that the probability of obtaining a contact
velocity higher than 19.7cm/s using the optimum waveform is between 0.08
and 0.17, while it is between 0.50 and 0.63 for the deterministically designed
waveform. Using this type of analysis, one can obtain a level of confidence
in the manner with which the MCS method has solved the uncertainty prob-
lem. Then, only the system model and model reduction techniques need be

questioned.

One would expect that it might be possible to reduce the contact velocity by
modifying the switch design or by improving the manufacturing process to
reduce the variance of the switch’s parameters. Either approach changes the
distributions for the system parameters. A deterministic design change entails
changing the nominal value of the distributions of the parameters defining

the switch. In doing so, we assume that changing the design alters only the
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mean value of a given parameter, leaving the shape of the distribution and the
coefficient of variation of the parameter unchanged. On the other hand, one
may seek to reduce the coefficient of variation of a parameter by improving
the manufacturing process. This may be more costly or difficult than a design

change, but it may be necessary to meet demanding performance objectives.
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Optimal Ensemble Response.: u,= 91.7, t,= 5.19 ps,
tr,= 20.1 ps, v, = 19.67 cm/s, N unclosed =0

200 T T T T T :

100t

Voltage (V)

Displacement (um)

Velocity (cm/s)

Time (us)

Fig. 8. Current Design with Probabilistic Model: Voltage waveform optimized under

uncertainty and ensemble displacement and velocity response.
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Fig. 9. Current Design with Probabilistic Model: Histogram of mazimum contact

velocity for the ensemble of switches after waveform OUU.
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4.3  Modified Design: Input OUU

Once the optimum waveform had been identified for the current design, the op-
timization methodology was then applied to study the effect of design changes
on switch contact velocity. Deterministic analysis of Eq. (1) with a quasi-
constant voltage u(t) reveals that the system has an unstable equilibrium at
X = G/3. The maximum value for X is D, so the ratio X/G can be no larger
than D/G. With the current design and the bounded PDF's described previ-
ously, the switches close with 0.59 < D/G < 0.75, which is well beyond the
instability at X/G = 1/3. The design was modified to reduce this ratio some-
what (resulting in 0.41 < D/G < 0.52 for the new design) and a new optimum
waveform was found for the modified design. The modified design is described
by a new collection of random variables D', G', K" and M’, whose mean values
have been altered. The new random variables are obtained from the old such
that the coefficient of variation (COV) of each remains unchanged, i.e.,

Y' = (1 + Au) Y, (14)

1

where Y’ is the distribution whose mean value p has shifted by Apu. By requir-
ing the COV to remain unchanged, we do not assume that the new design can
be fabricated with less variability than the current design. The D /G ratio was
reduced by increasing and decreasing the values of D and G by 0.5 um. Such
small changes were chosen so that the modified design would not deviate from
the original design too drastically. The mean value of the distribution that
defines the thickness of the switches was increased by 0.6 um so the force that
the leaf springs supply in the closed position would remain approximately con-
stant. Samples of D', G', T" and E’ were used to generate correlated samples

for K’ and M’'.
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Figure 10 shows the optimum waveform and the response of an ensemble of
switches with this modified design. The waveform requires a larger voltage to
hold the switch closed than that in Fig. 8 since D/G is smaller. Once again, the
optimum waveform has a slower ramp up to the hold voltage than one would
choose based on deterministic considerations. Compared to the previous cases,
the percentage of switches that do not close due to the initial close pulse is
smaller, yet these switches can take more than 140us to close. The majority
of the switches close within 70us with contact velocities below 15 cm/s. The
switches with the highest contact velocities seem to be those which impact the
contacts before 20 us, rebound, and impact again with higher velocity between

25 — 30 ps.

Figure 11 shows a histogram of the maximum contact velocity. The upper and
mean contact velocity have reduced to v, = 12.5cm/s and 10.7cm/s respec-
tively, a reduction of more than 30% compared to the OUU waveform for the
current design in Section 4.2, or about a 50% improvement relative to either

the unshaped or deterministically designed waveforms.
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Optimal Ensemble Response.: u,= 132, t,= 11.3 ps,
tr,= 10.7 ps, v, = 12.46 cm/s, N unclosed =0
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Fig. 10. Modified Design with Probabilistic Model: Voltage waveform optimized under

uncertainty and resulting ensemble displacement and velocity response.
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Fig. 11. Modified Design with Probabilistic Model: Histogram of maximum contact

velocity for the ensemble of switches after waveform OUU.
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4.4 Current Design with Process Repeatability Improved: Input OUU

The effect of manufacturing process repeatability on impact velocity was also
investigated. This information was sought to assess the cost-versus-benefit
realized by improving process repeatability. This was studied by changing the
coefficient of variation (COV) of each random variable and then finding a new
optimum waveform for the improved process. Let Y be a random variable
with mean p # 0, standard deviation o > 0 and COV o /u. The COV can be

modified by 0 < Ao < 1 using the following change of variables
V" =u(l —Ao) + AcY. (15)

New distributions for the switch model parameters D", G”, K" and M" were
generated by assuming a 50% reduction in the COV of the switch thickness,
gap distance and travel distance (Ao = 0.5) from the current design. A his-
togram of the maximum contact velocities after optimizing the waveform for
the modified parameter distributions is shown in Fig. 12. This ensemble of
switches achieves upper and mean maximum contact velocities of 12.8cm/s
and 9.6cm/s respectively, an improvement of 35% over the current design in
Section 4.2. This type of analysis provides management with a quantified mea-
sure of the expected gains in design performance due to an investment that

improves process repeatability.
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Fig. 12. Current Design with Process Repeatability Improved: Histogram of mazimum

contact velocity for the ensemble of switches for current design after waveform OUU.
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5 Conclusions

This work has demonstrated input waveform optimization under uncertainty
for a highly nonlinear, electro-statically actuated radio-frequency MEMS switch.
A reduced order model for the switch, including an uncertainty model based
on experimental data and expert opinion, was used in a Monte Carlo simula-
tion that predicted the maximum impact velocity experienced by an ensemble
of switches subjected to an input waveform. The shape of the waveform was
then optimized to minimize the contact velocity for the ensemble of switches,
resulting in a 50% reduction in the overall contact velocity when compared to
an unshaped waveform. Care was taken to assure that the majority of switches
closed in a reasonable amount of time by adjusting the weighting given to the
number of switches that close within a certain time and the contact veloc-
ity. The optimization procedure was used to predict the reduction in contact
velocity that could be obtained by modifying the design of the switch. One
design and its corresponding optimum waveform were presented that reduced
the contact velocity by 30% relative to the optimum waveform for the current
design. These results are summarized in Fig. 13. The improvement obtained by
optimizing the waveform while considering uncertainty is substantial. It is also
interesting to note that none of the estimated PDFs appears to have a stan-
dardized form. Considerable errors might have been obtained if a statistical

method were used that assumes a form for the distribution of the output.

Other modifications of this class are currently being investigated consider-
ing all of the manufacturing and electrical performance constraints on the
switches. The optimization procedure was also used to predict the effect of

improving the repeatability of the manufacturing process on the contact ve-
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locity, revealing that a 50% improvement in repeatability resulted in a 35%
reduction in the contact velocity of the ensemble of switches. This information
is valuable when performing cost-benefit analyses to justify future investments
to improve the fabrication process and to allocate project resources between

design and process improvement.

All of these analyses would have been computationally intractable if a low
order, computationally efficient model for the switches had not been available.
An adequately accurate model for the switches was derived using classical
model reduction techniques and physical insight. The expected accuracy of
this model can be established to a significant degree by considering the effect of
the nonlinear contact forces and the input voltage waveform on the otherwise
linear switches, as was discussed, so the limitations of the model are relatively
well understood. (This model was also validated previously using experimental

measurements on actual switches [13,5,3].)

Estimates of PDFs of Maximum Contact Velocity

I Deterministic Optimum
015 [EZ Optimized Under Uncertainty
. I Design Change and OUU

0.1

PDF

0.05

0 20 40 60
Max. Contact Velocity (cm/s)

Fig. 13. Estimates of the probability density functions of contact velocity for the
ensemble of switches using 1.) waveform optimized for deterministic model, 2.) the
waveform optimized under uncertainty for current design, and 3.) waveform opti-

mized under uncertainty after modifying the switch design.
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The effort that was applied to derive and validate a simple, low-order model
paid large dividends since the Monte Carlo Simulation (MCS) technique could
be applied to perform uncertainty analysis. MCS requires no a priori assump-
tions about the character of the uncertainty problem, so the results obtained
are true to the model and their expected variance could be computed. Con-
versely, many of the methods discussed in the introduction, such as FORM
and SORM, make assumptions regarding the mathematical form of the un-
certainty problem that cannot be evaluated unless a trusted sampling method
such as MCS is also applied. One should also note that the detailed informa-
tion that was obtained regarding the diverse phenomena experienced by the
ensemble of switches would typically not have been obtained if a reliability
method had been employed, once again highlighting the utility of Monte Carlo

Simulation in this application.
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