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ABSTRACT 
The industry standard method used to validate finite element models involves correlation of test 

and analysis mode shapes using reduced Test-Analysis Models (TAMs).  Some organizations even 

require this model validation approach.  Considerable effort is required to choose sensor locations and to 

create a suitable TAM so that the test and analysis mode shapes will be orthogonal to within the required 

tolerance.  This work uses a probabilistic framework to understand and quantify the effect of small errors 

in the test mode shapes on test-analysis orthogonality.  Using the proposed framework, test-orthogonality 

is a probabilistic metric and the problem becomes one of choosing sensor placement and TAM 

generation techniques that assure that the orthogonality has a high probability of being within an 

acceptable range if the model is correct, even though the test measurements are contaminated with 

random errors.  A simple analytical metric is derived that is shown to give a good estimate of the 

sensitivity of a TAM to errors in the test mode shapes for a certain noise model.  These ideas are then 

applied to a generic satellite system, using TAMs generated by the Static, Modal and Improved Reduced 

System (IRS) reduction methods .  Experimental errors are simulated for a set of mode shapes and 

Monte Carlo simulation is used to estimate the probability that the orthogonality metric exceeds a 
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threshold due to experimental error alone.  For the satellite system considered here, the orthogonality 

calculation is highly sensitive to experimental errors, so a set of noisy mode shapes has a small 

probability of passing the orthogonality criteria for some of the TAMs.  A number of sensor placement 

techniques are used in this study, and the comparison reveals that, for this system, the Modal TAM is 

twice as sensitive to errors on the test mode shapes when it is created on a sensor set optimized for the 

Static TAM rather than one that was optimized specifically for the Modal TAM.  These findings are 

evaluated in light of previously published studies of TAM sensitivity, and special attention is given to 

Gordis’s theory, which suggest that TAM sensitivity is related to the natural frequencies of the structure 

when all measurement points are fixed.  Some aspects of TAM sensitivity are problem dependent, so this 

one work cannot achieve a conclusive ranking of all of the available methodologies.  Instead, this work 

focuses on presenting a set of tools and a probabilistic framework that can be used to correctly quantify 

TAM sensitivity and demonstrating the approach for one dynamic system and for a particular probabilistic 

model for the errors contaminating the test mode shapes. 

1. INTRODUCTION 
Finite element models have been used successfully for many years to predict the response of 

aerospace structures to their environmental loads.  In order to ensure that critical predictions are 

accurate, each finite element model (FEM) must be experimentally validated, typically by comparing FEM 

modal parameters with those extracted from modal tests.  This process has been called test/analysis 

correlation.  Frequencies are compared directly, while the agreement between the mode shapes is most 

often evaluated by quantifying the orthogonality and cross-orthogonality of the modes.  One can never 

measure at each node of the FEM, so a reduced representation, called a test-analysis model (TAM) is 

generated and the orthogonality of the modes is computed with respect to the TAM mass matrix [1].  Past 

experience has revealed that orthogonality is a good indicator of a valid FEM model, one which can be 

used confidently in coupled-loads analysis [2].  The use of these metrics, and the required values for 

test/analysis correlation, are dictated by agencies such as NASA [3] and the United States Air Force [1].  

For example, the U.S. Air Force requires test/analysis frequency errors less than or equal to 3.0%, cross-

generalized mass values greater than 0.95, and coupling terms between modes of less than 0.10 in test-

orthogonality and test-FEM cross-orthogonality (see [1], Sec. 5.12.3.10). 
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Many model reduction techniques have been developed, but the one that has been used the 

longest, and perhaps trusted the most, is the static or Guyan reduction [4].  However, there are cases 

where it does not provide accurate representations of the FEM, such as solid rocket motor applications 

[5].  Furthermore, it is sometimes very difficult to find a sensor set that is small enough to be practical, yet 

that still results in a good static TAM.  This provided incentive for the development of a series of 

advanced TAM techniques, using Modal [6], Hybrid [7] and SEREP [8] reductions, which exactly predict 

the target modes, and the IRS TAM [9], which improves on the static TAM by approximating the inertia 

terms that are neglected in the static reduction. 

While it is accepted that these advanced reduction techniques more accurately predict the FEM 

modal parameters and greatly improve orthogonality when the test mode shapes are equal to the FEM 

mode shapes, some works have found them to be more sensitive to FEM/test errors than Guyan 

reduction.  Sensitivity produces larger off-diagonal terms in the orthogonality computations, and this 

sensitivity is thought to be a fault of the TAM rather than a meaningful indication of mismatch between the 

test results and the FEM.  This is undesirable, not only from the analyst's point of view, but also from the 

test engineer's perspective, where the success of the test is based on minimizing the size of these terms.  

A few works have investigated TAM sensitivity using both simulated and actual experimental mode 

shapes.  Chung [10] compared the Static, IRS, Modal, and Hybrid TAMs for three different systems, using 

real modal test data with the sensor locations optimized for the static reduction.  He concluded that 

overall, the Static TAM performed the best, but the differences between the cross orthogonality terms for 

all of the methods were small for all three of the systems that he considered.  Freed and Flanigan [11] 

investigated the same four TAMs for two different systems.  The first system used simulated test data 

based on a modified FEM representation of a simple spacecraft.  They placed sensors based on “kinetic 

energy and mode shape observability” [11] and found that the Hybrid and Modal TAM representations 

were the most sensitive to errors.  Their second example employed real test data from the Titan dual 

payload, where the Hybrid TAM was observed to be the most robust, followed by the Static, IRS and then 

Modal TAMs.  Avitable et. al. [12] compared Static, IRS, MAC [13], SEREP, and Hybrid TAM approaches.  

They used both simulated and real test data for a 2-bay truss.  In the case of simulated experimental 

data, they found that the SEREP and Hybrid TAMs produced better orthogonality results than the Static 
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TAM for large sensor sets, and significantly better results for reduced sets.  For real test data, SEREP, 

Hybrid, and Static TAMs gave similar orthogonality results for large sensor sets, but the Static TAM was 

significantly worse for small sensor sets.  Matsumura compared the Static TAM with XORviaGDOP [14], 

which can be viewed as an extension to SEREP, observing that the latter was slightly more sensitive than 

the Static TAM, although the comparison was not pursued in detail. 

All of the studies just cited used the same sensor set for each TAM, a sensor set that was usually 

chosen for the Static TAM, but each reduction procedure demands its own optimally placed sensor set.  

The Modal TAM requires that the target modes partitioned to the sensor set are as linearly independent 

as possible, as can be obtained using Effective Independence (EfI) [15] to place the sensors.  The static 

reduction requires that the target modes be independent in a mass weighted sense.  The studies just 

cited might have obtained artificially high sensitivity for the Modal TAM if the sensor set they employed 

was optimized for a different TAM.  This work explores this issue using state of the art sensor placement 

techniques for each TAM, and also by comparing the performance of the Static and Modal TAMs on 

various sensor sets. 

The most significant limitation of the previous works is that they employed a deterministic 

approach, computing the orthogonality of the test modes with respect to the TAM once, for a single set of 

test data, but the test mode shapes can be expected to vary significantly if the measurements are 

repeated so they should be modeled as random variables.  In many of the studies cited previously, 

differences between the TAMs were small, so it was difficult to tell whether the differences were 

statistically significant.  The key contribution of this work is that it uses a probabilistic framework to 

explore the question of TAM sensitivity to test errors, allowing one to quantify the sensitivity of each TAM 

in a meaningful way.  Only one other work has taken a probabilistic view [14], but it was limited to the 

cross-orthogonality, a particular Gaussian noise model, and was focused on the XORviaGDOP TAM [14].  

This work presents a procedure whereby the performance of the TAMs can be quantified probabilistically 

using Monte Carlo simulation.  The problem is also treated analytically, resulting in a metric that can be 

used to estimate the sensitivity of the test-orthogonality to mode shape errors.  Using a probabilistic 

approach, this work demonstrates that when sensitivity to errors is important, passing or failing the 

orthogonality criteria may be purely a matter of random chance.  Failure to recognize this could cause 
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significant frustration for both experimentalists and analysts.  If the experimentalists find that their initial 

test modes do not satisfy test-orthogonality, they are likely to invest extra time and effort in the test, 

perhaps adjusting boundary conditions, modifying modal parameter identification, checking sensor 

orientations, etc...  This adds to the cost of the test, but would add little value if the initial test modes failed 

test-orthogonality only because of small, inevitable errors.  Likewise, if an analyst encounters a model 

that has failed to meet validation criteria due to an overly sensitive TAM, they may: 

• Reject an FE model that is accurate to within the resolution of the test measurements. 

• Needlessly update a FEM model to recreate the random noise pattern observed in a particular test. 

• Make numerous perturbations to the TAM procedure, sensor set, or FEM model in an effort to pass 

the validation criteria, achieving little more than a random set of perturbations that passes the 

orthogonality metric for a given set of noise contaminated mode shapes. 

• Falsely conclude that an inadequate model is valid because it correlates well with a particular test. 

It is important to quantify the effect of measurement errors on test-orthogonality so that these scenarios 

can be avoided. 

The probabilistic framework proposed here is demonstrated by applying it to simulated 

measurements from a satellite system.  A set of FEM target modes are corrupted with uniform random 

errors to simulate measurement errors, then the orthogonality of the noisy modes is computed with 

respect to four different TAMs, each of which was created with its own optimal sensor set.  A Monte Carlo 

simulation is used to estimate the probability distributions for the average and maximum off-diagonal 

terms in the orthogonality.  Both the examples and theoretical development presented here presume that 

the FEM is an accurate representation of the test hardware, so any mismatch between the FEM and test 

mode shapes is attributed to test errors.  One would hope that the TAMs would indicate that the model is 

correlated in this situation, but the example shows that the probability of failing to meet test-orthogonality 

criteria may be high, even if the FEM is accurate and the errors in the test mode shapes are relatively 

small.  Because of space limitations, only this one satellite system is considered, so the question of which 

TAM is best cannot be conclusively answered.  However, the framework presented here can be used to 

understand the issues involved with TAM sensitivity and test/FEM correlation and to develop remedies. 
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This paper is organized as follows.  Section 2 summarizes existing methods and derives a metric 

to quantify TAM sensitivity using the probabilistic framework.  The specific TAM generation and sensor 

placement methods that are used here are reviewed in Appendix A, as well as a new TAM generation 

method, the Inverse TAM, which is presented in Section A.1.4 and a new sensor placement method, the 

Condition number algorithm, which is presented in Section A.2.3.  Section 3 describes the satellite model 

studied here and the pre-test correlation based on the perfect FEM model.  Section 4 presents the mode 

shape error model and the results of the Monte Carlo simulation for each TAM method, and compares the 

results with the analytical predictions.  Conclusions are presented in Section 5. 

2. Theoretical Development 
2.1. Background 

Because the test mode shapes can never be measured at all of the nodes in a finite element 

model, one must either expand the test mode shapes to the FEM nodes or reduce the FEM to the test 

nodes before orthogonality can be computed.  The latter approach is the focus of this work.  The reduced 

FEM model is called a Test-Analysis Model (TAM).  Using this paradigm, model correlation involves at 

least two stages.  In the first stage a set of target modes is identified, a TAM model is created and a 

series of metrics are used to determine how well the TAM represents the FEM model.  We shall denote 

the FEM target mode shapes partitioned to the sensor degrees of freedom as FEMφ , the reduced mass 

matrix TAMM , and the target mode shapes calculated using the reduced mass and stiffness matrices 

TAMφ .  The metrics used to measure TAM/FEM correlation are orthogonality,  

 T
FEM TAM FEM=O φ M φ  (1) 

cross orthogonality,  

 T
FEM TAM TAM=CO φ M φ  (2) 

and comparison of the TAM and FEM natural frequencies 

 FEM TAM
error

FEM

*100f ff
f
−

= . (3) 

Once an acceptable TAM has been created, one may proceed to test-analysis model correlation and then 

to updating.  The TAM mass matrix is used to compute the orthogonality using eqs. (1) and (2), only now 
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between the test, testφ , and FEM, FEMφ , mode shapes.  In all of the following, the term “orthogonality” 

and the symbols O and CO will be used to describe both TAM/FEM and Test/FEM orthogonality, as is 

typically done in the literature; it is clear from the context whether the TAM and FEM or the Test and FEM 

are being compared.  Note that damping is not considered in traditional model correlation methods, so 

real mode vectors must be estimated from the test; this could be a concern if the structure in question is 

very heavily damped or if one is concerned with high-fidelity modeling of damping, but these issues will 

not be considered here. 

Most test-analysis models can be derived from the eigenvalue problem for the ith mode shape 

and frequency, partitioned into two sets of degrees of freedom.  The degrees of freedom that will be 

retained are called the “a-set” and hence the corresponding matrices have a subscript of “a”, while the 

omitted degrees of freedom are denoted as the “o-set” (subscript “o”).  The partitioned eigenvalue 

problem can be written as follows. 

 2 0aa ao ai aa ao ai
i

oa oo oi oa oo oi

ω
⎡ ⎤ ⎧ ⎫ ⎡ ⎤ ⎧ ⎫

− + =⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎩ ⎭ ⎣ ⎦ ⎩ ⎭

M M φ K K φ
M M φ K K φ

 (4) 

One can obtain the well-known dynamic reduction equation by extracting the lower partition and solving 

for at the o-set degrees of freedom from the a-set motion resulting in the following. 

 ( ) ( )12 2
oi oo i oo oa i oa aiω ω

−
= − − −φ K M K M φ  (5) 

Dynamic reduction is theoretically exact, but the solution for the o-set is dependent on the 

frequency of the mode under consideration, so a reduced model obtained from dynamic reduction would 

have frequency dependent mass and stiffness matrices.  To avoid this undesirable result, a number of 

alternatives have been proposed, four of which are utilized in this work: the static or Guyan TAM [4], the 

Improved Reduced System (IRS) TAM [9], the Modal TAM [5, 6], and a new modal TAM named the 

Inverse TAM.  The existing TAMs are reviewed in the Appendix in Sections A.1.1 through A.1.3.  The new 

Inverse TAM is presented in Section A.1.4. 

Gordis noted [16] that one can think of these TAMs as an approximation to the dynamic reduction 

equation above, which depends on inverting the matrix 

 ( )2
oo i ooω−K M . (6)  
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This matrix is ill-conditioned when 2
iω is near any of the eigenvalues of the Koo, Moo system.  The natural 

frequencies of the Koo, Moo system are the natural frequencies that the system would have if it were were 

anchored at its a-set degrees of freedom.   If those frequencies are near the natural frequencies of the 

actual system, then the dynamic reduction equation will be ill-conditioned.  Physically, this means that the 

structure can have low frequency motion that is not observable on the a-set degrees of freedom, so the o-

set motion cannot be determined from the a-set responses alone.  Gordis noted this fact and suggested 

that the IRS TAM might greatly magnify errors in the test mode shapes if this is the case because the IRS 

TAM approximates the dynamic reduction equation.  He suggested that one can test for sensitivity by 

computing the eigenvalues of the system with the a-set DOF restrained and see if the resulting 

frequencies are close to the frequencies of the actual system.  Both Gordis [16], and Blelloch and Vold 

[17] seem to have extrapolated this theory to apply to any TAM that approximates the inertia terms, such 

as the Modal TAM.  These ideas will be evaluated for a satellite system in Sections 3 and 4. 

The accuracy of a test-analysis model clearly depends heavily on which sensors are retained (the 

a-set); some sensor placement techniques have even been derived to be optimal for a certain TAM.  Two 

existing sensor placement techniques, the Effective Independence (EfI) and modal kinetic energy 

techniques, are reviewed in the Appendix in Sections A.2.1 and A.2.2 respectively.  A new sensor 

placement technique, dubbed the Condition number (C#) technique is presented in Section A.2.3. 

2.2. Analytical Evaluation of the Effect of Mode Shape Errors on Test-Analysis 
Orthogonality 

The same orthogonality equations are applied regardless of which TAM mass matrix and sensor 

locations are employed, so the following analysis applies to any of the methods just mentioned.  

Assuming that additive noise contaminates the test mode shapes, the test orthogonality of the i,jth term 

can be rewritten as follows where iφ  denotes the true test mode shape and ni denotes errors that 

contaminate the ith mode shape. 

 ( ) ( )T
ij i i j jO = + +φ n M φ n   (7) 

Oij is i,jth entry of the orthogonality matrix and M  is the TAM mass matrix.  This expression can be 

expanded into the following  
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 T T T T
ij i j i j i j i jO = + + +φ Mφ φ Mn n Mφ n Mn . (8) 

Taking the expected value of Eq. (8), we can surmise that the mean of the orthogonality is equal 

to the true orthogonality (1st term) so long as: 

• The error vectors ni and nj are zero mean (causing the expected values of the 2nd and 3rd terms to 

vanish) and 

• Each random variable in ni is independent of each variable in nj (causing the 4th term to vanish). 

One way of interpreting Eq. (8) is to consider the 2nd and 3rd terms as random variables that are 

formed from linear combinations of the random variables comprising the noise vectors ni and nj.  Hence, if 

the noise on each random variable is independent and identically distributed, then by the central limit 

theorem, the distribution of their sum becomes Gaussian as the number of sensor locations approaches 

infinity.  The same is true for the 4th term, revealing that the noise on the orthogonality estimate is 

Gaussian under these circumstances.  A Gaussian random variable is described completely by its mean 

and standard deviation [18].  The number of sensors is never really infinite in a real test, but this 

approximation can be quite accurate even with tens of sensors, and it is not uncommon for a modal test 

to employ a few hundred sensors in which case the approximation can be quite good.   

The standard deviation Oijσ of the i,jth term in the orthogonality matrix can be computed by 

subtracting the mean orthogonality μij from Oij, squaring the quantity and then finding its expected value. 

 ( )( )22
Oij ij ijE Oσ μ= −  (9) 

Under the assumptions stated above, the mean orthogonality is equal to the true orthogonality, so the first 

term in eq. (8) cancels with μij and there are only three terms to be squared.  Each term is a scalar so six 

unique terms result and the expression becomes the following. 

 
( ) ( ) ( ) ( )( )

( )( ) ( )( )

2 2 22 T T T T T

T T T T

2

2 2

Oij i j i j i j i j i j

i j i j i j i j

Eσ ⎡= + + +⎢⎣
⎤+ + ⎦

φ Mn n Mφ n Mn φ Mn n Mφ

φ Mn n Mn n Mn n Mφ
 (10) 

These terms simplify substantially if the noise is assumed to be uncorrelated and zero mean as was done 

above for the mean orthogonality.  For example, the third term can be written as, 
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 ( )2T
i j mi nj mn ri sj rs

m n r s
E E n n M n n M⎡ ⎤⎡ ⎤ = ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

∑∑ ∑∑n Mn , (11) 

where ()m denotes the mth row of () and ()mn denotes the element at the mth row and nth column.  Taking 

the summations to the outside and noting that, when the noise is uncorrelated and zero mean, the 

expectation of each term vanishes except for those for which r = m and s = n, one obtains  

 2 2 2 2 2 2
noise, noise,mi nj mn mi nj mn

m n m n
E n n M Mσ σ⎡ ⎤ =⎢ ⎥⎣ ⎦
∑∑ ∑∑ , (12) 

where σnoise,mj is the standard deviation of the noise for the jth mode and the mth sensor.  The first and 

second terms can also be written in terms of the respective standard deviations.  The situation is different 

for the fourth through sixth terms.  For example, the fourth term can be written as, 

 ( )( )T T2 i j i j mi mn nj ri rs sj
m n r s

E E M n n Mφ φ⎛ ⎞⎡ ⎤ = ⎜ ⎟⎣ ⎦ ⎝ ⎠
∑∑∑∑φ Mn n Mφ  (13) 

which reveals that this term vanishes if nri and nnj are uncorrelated.  The fifth and sixth terms likewise 

vanish, so one finally obtains the following expression for the standard deviation of the i,jth term of the 

test orthogonality matrix in terms of the standard deviation of the noise in each mode and at each sensor, 

 ( ) ( )2 22 2 2 2 2
noise, noise, noise, noise,Oij i mi j mj mn mi njm m

m m m n
Mσ σ σ σ σ= + +∑ ∑ ∑∑Mφ Mφ .  (14) 

All of the terms are squared, so this reveals that TAMs which produce a TAM mass matrix with large 

elements, or large elements in iMφ  will be most sensitive to noise.  The expression can be easily 

implemented into a simple computational routine to compute the sensitivity of a TAM from its mass matrix 

and the target mode shapes, but one should bear in mind that this equation was derived for a case where 

the noise contaminating the mode shapes is additive, zero mean and uncorrelated.  Similar expressions 

could be derived for other noise models, such as multiplicative noise or correlated noise, but more 

complicated noise models quickly lead to a much more complicated expression, so the exercise might not 

produce much additional insight. 
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3. Pre-Test Correlation 
3.1. Overview of Satellite Model 

The proposed probabilistic framework was evaluated by applying it to the generic satellite shown 

in Fig. 1  The finite element model is comprised of 1,191 nodes totaling 7,146 degrees of freedom. The 

target modes chosen for this study are the first 18 elastic modes listed in Table 2; the system’s six rigid 

body modes are not considered. 

 
Fig. 1:  Generic Satellite with 7,146 degrees of freedom. 

3.2. Sensor Locations for Satellite Model 
The sensor locations for the Static and IRS TAMS were found using the modal kinetic energy 

method.  One would need about six-hundred sensors to capture 90% of the satellite’s kinetic energy.  

This number of sensors would not be feasible in a real test, so the modal kinetic energy calculation was 

performed for each target mode independently and the six degrees of freedom with the largest kinetic 

energy were selected for each target mode.  Only translational degrees of freedom were considered in 

this calculation.  It was also discovered that the lumped masses had to be instrumented to provide an 

accurate Static TAM because they represent such a large portion of the mass of the structure.  Therefore, 

these lumped masses were manually included in the KE sensor set used for the Static TAM.  This 

resulted in a sensor set with 108 sensors to capture the 18 target modes.  The Static/IRS TAM sensor 
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locations, found using the KE method are shown in Fig. 2.  Each diamond represents a sensor in the X, 

Y, or Z direction, or a combination of the three. 

The Modal TAM EfI and C# sensor set locations are also shown in Fig. 2.  Effective independence 

favors the edges of the satellite, and does not place any sensors on the satellite core.  The C# sensor 

placement approach was initiated with set of 26 sensors on the edges of the PV arrays and reflectors that 

were chosen to allow one to easily visualize the motion of the satellite.  The C# algorithm was then used 

to augment this set; the algorithm primarily selected additional sensors on the satellite core. 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 2:  Static/IRS (a), Modal EFI (b) and Modal Condition Number TAM (c) sensor 
locations. 

In order to examine Gordis’ theory that the o-set dynamics determine TAM sensitivity [16], the a-set 

degrees of freedom, or sensor locations, determined using both the kinetic energy and Effective 

Independence sensor placement techniques, were constrained and the modes of the resulting 

constrained systems were computed.  Table 1 lists the natural frequencies of the target modes of the 

actual system, the natural frequencies of the system with the sensor (a-set) DOF for the Static/IRS TAMs 

constrained, and those with the Modal EfI TAM sensors constrained.  The lowest natural frequency of the 

system with the Static/IRS sensor locations constrained is 5 Hz higher than the highest target mode.  On 
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the other hand, the Modal EfI TAM a-set produces modes that are interspersed with the system natural 

frequencies.  According to Gordis’ theory discussed in Section 2.1, one would expect this Modal TAM to 

be highly sensitive to errors in the test mode shapes. 

Table 1:  System natural frequencies and the natural frequencies when the sensor degrees of 
freedom (a-set) are constrained 

System 
Target Mode 

Nat. Freqs. (Hz) 

Static/IRS 
Nat. Freqs. (Hz) 

with a-set 
constrained 

Modal EfI  
Nat. Freqs. (Hz) 

with a-set 
constrained 

0.31 16.84 0.37 
0.63 16.84 1.18 
0.80 17.45 1.88 
1.79 17.45 2.65 
2.72 17.76 3.19 
2.83 17.76 5.91 
3.49 19.56 17.35 
3.68 19.56 17.35 
3.99 23.85 17.61 
4.24 25.03 17.64 
5.91 27.14 17.76 
6.41 27.14 17.76 
7.46 31.33 19.33 
7.48 31.33 19.35 
9.61 31.34 21.52 
9.71 31.34 21.52 
11.75 35.03 21.92 

 

3.3. Pre-Test TAM/FEM Correlation Results  
Each sensor set provided acceptable TAM/FEM correlation when the perfect FEM modes were 

used.  Table 2 displays the frequency error for the Static and IRS TAMs.  The maximum frequency error 

for the Static TAM is approximately 2.3%, and the error is even smaller for the IRS TAM.    As expected, 

the Modal TAMs reproduce the natural frequencies of the 18 target modes perfectly, and result in perfect 

orthogonality, so they are not included in Table 2.  Fig. 3 displays the off-diagonal terms in the 

orthogonality matrix for the Static TAM.  The maximum off-diagonal orthogonality and cross-orthogonality 

values for the Static TAM were 0.05 and 0.031 respectively, while the corresponding values for the IRS 

TAM were all less than 0.01. 

Table 2:  Static and IRS TAM frequency error 

FEM Target 
 Mode 

 Number 

FEM  
Frequency  

(Hz) 
Primary 

Direction 
Static TAM 

 Frequency Error 
(%) 

IRS TAM  
Frequency Error 

(%) 
1 0.31 Z 0.00 0.00 
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2 0.63 X 0.00 -0.01 
3 0.80 Z 0.00 0.00 
4 1.79 X and Y 0.00 0.00 
5 2.72 Z -0.10 0.00 
6 2.83 Z -0.11 0.00 
7 3.49 Z -0.15 0.00 
8 3.68 Z -0.17 0.00 
9 3.99 Z -0.43 0.00 

10 4.24 Z -0.37 0.00 
11 5.91 Y -0.09 0.00 
12 6.41 Y -0.11 0.00 
13 7.46 Z -1.50 0.00 
14 7.48 Z -1.51 0.00 
15 9.61 Z -2.23 0.00 
16 9.71 Z -2.31 0.00 
17 11.75 Z -0.16 0.00 
18 11.75 Z -0.16 0.00 
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Fig. 3:  FEM-TAM Orthogonality Matrix for the Static TAM.  The diagonal was removed by 

subtracting an identity matrix to aid in viewing the off-diagonal terms. 

4. Probabilistic Study of Test-Analysis Correlation for Generic Satellite Model 
4.1. Noise Model 

In practice, model updating and validation are complicated by the fact that experimental 

measurements are contaminated with both random noise and systematic errors.  Some sources of 

measurement error include: errors in the positioning and alignment of the sensors, imperfect modal 

parameter extraction, sensor calibration inaccuracy, cross-axis sensitivity and electrical noise.  These 

errors have not all been thoroughly quantified in the literature, yet there is increasing interest in doing so 
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[19].  For example, a number of recent works have sought to estimate the variance of the modal 

parameters estimated by state of the art modal parameter estimation routines [20-22]. 

For the present study, experimentally measured mode shapes were simulated by adding 

uniformly distributed noise to each finite element mode shape.  The simulated noise was created by 

adding a vector of uniformly distributed random numbers to each mode shape, scaled to 2% of the 

maximum value of that mode shape.  This noise model was used because it assures that the noise on the 

mode shapes is bounded, but it results in the maximum entropy for a given set of bounds.  Specifically, 

the rth simulated test mode vector was, 

 test, FEM,r r r= +φ φ n  (15) 

 r r rc ε=n u  (16) 

where, 
 

test,rφ  = FEM target mode shape with added noise 

FEM,rφ = FEM target mode shape 

rn = vector of noise added to FEM target mode shape 
  ε  = noise level, in this study ε = 0.02 
  cr = scaling factor, ( )FEM,maxr rc = φ  

ru  = vector of independent uniformly distributed random numbers between -1 and 1. 
 

The actual noise profile obtained in a real experiment is much more complicated than that 

represented here, yet one would expect that the magnitude of the uncertainty in each element of an 

experimentally measured mode shape may be even greater than 2%. For example, accelerometer 

calibration factors are typically reported with a 95% confidence interval of ±4%, so typical uncertainty due 

to calibration alone can be greater than the 2% uncertainty used here. 

4.2. Results 
The test-orthogonality, O, between the noise-contaminated mode shapes, was computed using 

each of the TAM mass matrices.  The result found using the Static TAM mass matrix is displayed in Fig 4 

for one realization of the noise model.  Comparing this with the orthogonality matrix computed using 

perfect mode shapes in Fig. 3, we observe that almost all of the off-diagonal terms have increased and a 

few exceed the U.S. Air Force test-orthogonality criteria of Oij < 0.1, i ≠ j. This result represents the 
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orthogonality matrix that might be obtained from a single test due to random test errors.  The result 

obtained in a given test depends on the specific value of the noise obtained in each mode shape 

coefficient, so one might pass or fail to pass the test-exit criteria, depending on the particular pattern of 

errors in the test mode shapes. 
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Fig. 4:  Static TAM Test-Orthogonality Matrix using simulated test mode shapes.  The 
diagonal was removed by subtracting an identity matrix to aid in viewing the off-diagonal 

terms. 

Because the orthogonality is a random variable, it must be described statistically.  Perhaps the 

best way to do this is to compute the probability of passing or failing the orthogonality criteria given the 

assumed noise model.  In order to do this, a Monte Carlo Simulation (MCS) was performed.  The test-

orthogonality calculation was repeated for 10,000 random noise profiles, and the maximum and average 

off-diagonal terms in the orthogonality computation were stored for each trial.  Figure 5 shows a 

histogram of the maximum off-diagonal terms obtained in the MCS.  One can observe that the maximum 

off-diagonal term exceeds the Air Force validation criteria in most of the trials, so according to that criteria 

the FEM model would not be considered valid for most of the trials.  A kernel density estimator [23] was 

used to estimate the probability of obtaining acceptable orthogonality, which was found to be 

P(max(Oij)<0.1)=0.003.  This means that test personnel utilizing this TAM would have about a three in one-

thousand probability of meeting the test exit criteria, depending on the specific errors obtained in the set 
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of measured modes, or in other words, depending on random chance.  Similar trends were observed for 

the cross-orthogonality. 

 

0 0.1 0.2 0.3 0.4
0

200

400

600

800

1000

Static TAM Maximum Off-diagonal Term

C
ou

nt

 
Fig. 5:  Histogram of Maximum Off-Diagonal Term in Static TAM Test-Orthogonality. 

 
A number of TAMs were studied and probability density functions (PDFs) of the MCS results were 

estimated for each using the kernel density estimator in [23].  Fig. 6 shows estimates of the PDFs of the 

maximum off-diagonal term in the test orthogonality calculation for the Static, IRS, Modal Effective 

Independence (EfI), Modal Condition Number (C#), and Inverse (C#) TAMs.  As expected, the PDFs 

show that the probability of obtaining a maximum off-diagonal term of zero is small, because that requires 

that all of the off-diagonal terms be zero simultaneously.  The probability of obtaining a passing maximum 

off-diagonal value (i.e. less than 0.1) is quite small for both the Static and IRS TAMs, so these TAMs 

would almost always erroneously indicate that the model is not correlated.  On the other hand, the test 

mode shapes satisfy the orthogonality criteria most of the time when the Modal TAM is used.  The Modal 

TAM gives similar results whether effective independence or the condition number approach is used for 

sensor placement.  The PDF for the Inverse C# TAM overlays that of the Modal C# TAM, indicating that 

the two have similar sensitivity for this problem.  One should bear in mind that the PDFs presented were 

estimated from the results of the Monte Carlo simulation, so they are not exact, but should be quite 

accurate for such a large number of MCS samples. 
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Fig. 6:  Estimated Probability Density Functions of Maximum Off-Diagonal term in Test-
Orthogonality Matrix for Static, IRS, EFI Modal, Condition Number Modal, and Condition 

Number Inverse TAMs for the satellite system presented in Sec. 3.1. 

 
The MCS data is displayed numerically in Table 3, which lists the mean and standard deviation 

over the 10,000 MCS trials of the maximum off-diagonal terms for each TAM.  (The mean of the 

maximum off-diagonal term corresponds to the centroid of the PDFs shown in Figure 6.)  PDFs of the 

average off-diagonal term were not shown graphically, but their mean and standard deviations are also 

given in the Table 3. Comparing the statistics of the maximum and average off-diagonal terms, one finds 

that the average terms are an order of magnitude lower than the maximum terms.  This was also 

observed in the individual noise-contaminated orthogonality results, one of which was shown in Fig. 4.  

Further investigation revealed that certain modes were often responsible for the large maximum off-

diagonal terms.  The most common offender was the coupling between modes 3 and 14, which also 

corresponds to the largest off-diagonal term in Fig. 4.  Mode 3 involves anti-symmetric bending in the Z-

direction; mode 14 primarily involves motion of the reflectors. 

The statistics in Table 3 can be used to compare the different TAMs for this system.  The ideal 

TAM is characterized by a low mean value, which indicates that the maximum or average orthogonality is 

small.  The standard deviation should also be small, indicating that similar orthogonality results would be 

obtained for any realization of the random noise model.  The results in Table 3 indicate the Modal TAM is 

clearly the least sensitive to errors for this system while the IRS TAM is the most sensitive.  The 
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orthogonality of the Modal TAM was found on two additional sensor sets, both of which were created 

using the Condition number algorithm.  The first sensor set was obtained by starting with the 3 sensors 

possessing the highest effective independence, while the second started with the 15 lumped masses on 

the core of the satellite.  The C# TAM discussed up until this point, and shown in Fig. 6, was created by 

starting with a 26 sensor visualization set, as described in Section 3.2.  These results show that the 

condition number sensor placement technique does generally result in a very robust TAM; all three TAMs 

based on the C# sensors passed the orthogonality criteria most of the time, but the results do show that 

the sensor set found by the C# algorithm depends heavily on the initial sensor set.  The condition 

numbers shown in the table reveal that TAM robustness generally increased as the condition number 

decreased, but there are exceptions.  For example, the IRS TAM had a slightly lower condition number 

than the Modal EfI TAM, yet it was much more sensitive to mode shape errors than the Modal EfI TAM.  

On the other hand, the most robust TAM in terms of the maximum off-diagonal term was a Modal C# 

TAM, and it had the smallest condition number of those investigated. 

Table 3:  Test-Orthogonality Statistics for Various TAMs and Sensor Placement Schemes 

Maximum 
Orthogonality 
Off-Diagonal  

Average 
Orthogonality Off-

Diagonal 
 
 

Mean STD Mean  STD  

Condition 
Number 

of φa 

Static 0.191 0.043 0.029 2.9E-03 14.446 

IRS 0.758 0.069 0.244 2.8E-02 14.446 

Modal EfI 0.060 0.017 0.008 7.0E-04 16.227 

Modal on Static 
TAM Sensor Set 0.108 0.024 0.016 1.6E-03 14.446 

Modal C# TAM Starting with 
Visualization Set (Fig 6) 0.055 0.011 0.010 9.0E-04 3.759 

Modal C# TAM Starting with 3 
sensors with largest EfI 0.055 0.010 0.011 7.6E-04 6.317 

Modal C# TAM Starting with 15 
lumped masses 0.032 0.005 0.008 5.2E-04 2.334 

The method described in Section 2.2, which predicts the standard deviation of each term in the 

test orthogonality matrix, was applied to each of the TAMs used in this study.  Note that the method in 

Section 2.2 predicts the standard deviation of a single off-diagonal term in the orthogonality matrix prior to 
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any other processing.  In contrast, the standard deviations listed in Table 3 were obtained by first finding 

the maximum or average of the absolute value of the orthogonality over all of the sensor locations and 

then computing the sample standard deviation of these quantities over 10,000 MCS trials.  A more 

detailed analysis than that presented in Section 2.2, including the correlation between each term in the 

test-orthogonality matrix, would be required to predict the statistics shown in Table 3, so the standard 

deviation predicted by Eq. (14) is compared directly with the standard deviation computed from the MCS 

results for each of the terms in the test-orthogonality matrix.  Table 4 shows this comparison, but for 

brevity the standard deviations are only compared for ijth element of the orthogonality matrix, where i and 

j are the indices of the element in the test-orthogonality with the largest standard deviation.  The percent 

difference between the two is also shown.  The analytical method based on eq. (14) predicts the standard 

deviation very precisely for all of the TAMs except the Static and IRS TAMs. 

Table 4: Test-Orthogonality: Predicted and Actual Standard Deviations of Oij 

TAM Pred. σij MCS σij % Error i j 
Modal EfI 0.038 0.039 0.7 14 4 

Static TAM 0.149 0.132 -11.5 3 14 
Modal on Static 
TAM Sensor Set 0.075 0.071 -5.6 14 3 

Modal C# TAM Starting with 
Visualization Set (Fig 6) 0.027 0.027 0.4 9 4 

IRS 12.490 0.418 -96.7 14 13 
 

Mode 3 was often coupled to other modes in the orthogonality calculation.  Figure 7 shows the 

shape of that mode, and the shape obtained after contaminating the mode shape at the sensor locations 

with simulated errors as discussed previously, and then expanding the shape to all of the nodes in the 

FEA model.  Both the Static TAM and the Modal EfI TAM transformation matrices were used in the 

expansion.  The Static TAM produces artificially jagged reflector motion at many of the o-set degrees of 

freedom, indicating that it is sensitive to measurement noise.  On the other hand, the modal TAM 

transformation gives a very good approximation of the o-set motion in spite of the noise on the a-set 

measurements. 
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(c) 

Fig. 7:  Analytical Mode Shape 3 (a), Noisy Mode Shape Expanded using Modal EFI TAM 
(b), and Noisy Mode Shape Expanded using Static TAM (c) 

As noted previously, different sensor placement techniques have been developed for use with the 

different TAM methods.  The importance of the sensor locations was studied by creating another Modal 

TAM using the sensor locations that were optimized for the Static TAM.  As noted previously, many of the 

previous comparisons of the Static and Modal TAMs have created both on the same sensor set, usually a 

sensor set that was optimized for the Static TAM.  The PDF of the maximum off-diagonal term for this 

sub-optimal Modal TAM is shown in Fig. 8.  The corresponding result for the previously described Static 

and Modal EfI TAMs are repeated for comparison.  The Modal TAM is much more sensitive to mode 

shape errors when implemented using the Static TAM sensor locations, although in this case it is still less 

sensitive than the Static TAM. 
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Fig. 8:  Estimated Probability Density Functions of Maximum Off-Diagonal Term in Test-
Orthogonality Matrix for Static, EfI Modal TAM and Modal TAM Created Using the Static 

TAM Sensor Locations. 

4.3. Discussion 
  It was noted that the U.S. Air Force orthogonality criterion would have a small probability of 

being satisfied using either the Static or IRS TAMs for this system and number of sensors.  This is of 

concern because the simulated experimental mode shapes are merely noise contaminated copies of the 

true mode shapes, so it would be a mistake to update the finite element model to better correlate with 

these mode shapes, but the orthogonality criteria would most likely indicate that this is necessary when 

these TAMs are used.  Of course, the probability of passing is heavily dependent on the noise model.  

The noise model considered here corrupts the mode shapes at points with small motion most severely.  

This is often observed experimentally so it is not physically unrealistic, but it may explain the high 

sensitivity for this satellite whose massive core moved little.  A multiplicative noise model was also 

considered, in which each element of each mode shape was contaminated by no more than 2% of its 

actual value.  In that case the PDFs of the maximum off-diagonal term shifted left so that they were 

usually less than 0.1 for the Static TAM and all of the Modal TAMs, but the rankings between the methods 

were essentially the same.  Likewise, with 5% uniform, multiplicative noise all of the TAMs pass the 

orthogonality criterion with high probability except for the Static TAM, which has about a 65% probability 
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of passing.   Future works should certainly seek to develop more accurate noise models, but in any event 

the procedure developed here can be employed to evaluate TAM sensitivity, no matter which noise model 

is considered to be most realistic for a particular scenario. 

In Table 4, the standard deviations obtained from the Monte Carlo simulation were compared with 

those predicted using the formula developed in Section 2.2.  It was noted that the formula did not agree 

very well with the MCS results for the Static and IRS TAMs.  However, this discrepancy can be explained 

by the fact that when performing the MCS, the noise contaminated eigenvectors were re-normalized to 

make the diagonal terms of the test orthogonality unity, as is commonly done in practice.  This 

renormalization was not considered in the analytical sensitivity analysis.  The Static and IRS TAMS were 

very sensitive, so this normalization had a significant effect for them, while the diagonal terms for the 

modal TAMs were always near one, so the normalization didn’t change the noise level for those TAMs.  It 

is also worth noting that the predicted standard deviations in Table 4 follow the same rankings as the 

means of the maximum off diagonal term in Table 3, suggesting that Eq. (14) can be used to rank the 

TAMs or to develop a more robust sensor placement technique. 

5. Conclusions 
This work presented a stochastic framework that can be used to rigorously characterize the 

sensitivity of a test-analysis model to errors in the test mode shapes.  Mode shape errors may arise due 

to imperfections in modal parameter extraction, sensor calibration errors, measurement noise, 

accelerometer cross-axis sensitivity, etc….  The analysis presented in Section 2.2 revealed that each 

term in the orthogonality matrix will tend toward a Gaussian distribution if the mode shape errors are 

independent and identically distributed, and those ideas were used to develop a metric that relates to the 

sensitivity of a TAM to mode shape errors.  These ideas were validated using simulated measurements 

from a satellite.  Errors in the test mode shapes were modeled as uniformly distributed random noise 

scaled to a small fraction of the maximum value of each mode shape.  The system studied here exhibited 

considerable sensitivity for the number of target modes and sensors selected, which would cause the 

Static and IRS TAMs to have a small probability of passing the test-orthogonality criteria, even though the 

test mode shapes were contaminated with a relatively small level of noise.  The sensitivity of the TAMs to 

the sensor placement technique was also explored, and it was observed that a Modal TAM created on the 
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Static TAM sensor set was twice as sensitive as a Modal TAM created using Effective Independence to 

place sensors.  A new sensor placement technique, dubbed the Condition number algorithm, was 

presented and found to reduce the sensitivity of the Modal TAM to mode shape errors for the satellite 

system studied here. 

While only one system was considered here, the procedure developed here can be applied to 

virtually any system.  One could also use this approach to define the criteria (e.g. number of sensors or 

target modes, etc…) under which model correlation is possible for the TAM of interest and a certain level 

of sensor noise.  One could also develop an improved sensor placement algorithm based on the 

analytical orthogonality estimate presented here, which would provide a set of sensor locations that 

minimizes the TAM’s sensitivity to errors in the test mode shapes.  In doing so, it will be important to 

develop an accurate model for the measurement errors, and this will probably not be a trivial task, but 

considering the potential magnitude of the problem, it is a task that should certainly be pursued. 

This study also investigated Gordis’ theory [16] regarding TAM sensitivity, and demonstrated a 

case that contradicts the theory: the Modal TAM was not overly sensitive for this satellite, even though its 

constrained a-set natural frequencies were interspersed with the target modes natural frequencies (see 

Table 1). 

The authors would like to emphasize that this study does not purport to determine definitively 

which TAM is the most sensitive.  The performance of each TAM is probably dependent on the model, the 

number and character of the target modes selected, and the sensor locations. However, the approach 

presented here can be used to study sensitivity and TAM performance from a probabilistic viewpoint, and 

it is hoped that these methods will be employed to allow engineers to make more informed decisions 

regarding TAM sensitivity.

A. Appendix: Review of TAM Generation and Sensor Placement Techniques 
A.1. Test-Analysis Models (TAMs) 

A.1.1. Static (Guyan) TAM 
 The Static TAM is the most common model reduction technique and is available in many 

commercial finite element codes. The Static TAM neglects the inertia terms and hence removes the 

dependency on frequency.  The resulting static transformation is thus given by 
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The statically reduced mass and stiffness matrices are then given, respectively, by 

 T
S S S=M T MT , (18) 

 T
S S S=K T KT . (19) 

Each column of ST  represents the elastic deformation of the structure under a unit displacement of the 

corresponding a-set degree-of-freedom with all others constrained.  These shapes are also referred to as 

constraint modes. 

A.1.2. Improved Reduced System (IRS) TAM 
The Improved Reduced System (IRS) TAM [9] aims to improve upon the Static TAM by 

approximating the neglected inertia terms.  The frequency dependent terms in Eq. (5) are approximated 

using the statically reduced mass and stiffness matrices. 

 { } { }2 1
i ai S S aiω −≈φ M K φ  (20) 

The IRS transformation matrix can be written as the Static transformation matrix plus a correction term, 

iT . 

 IRS S i= +T T T  (21) 

 1
1 1

0 0
0

aa ao
i S S

oo oa oo oo oa

I −
− −

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= − ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

M M
T M K

K M M K K
 (22) 

The reduced mass and stiffness matrices, IRSM  and IRSK , are computed as in Eq. (18) and (19). 

A.1.3. Modal TAM 
There are circumstances in which the Static TAM fails to accurately represent the dynamics of the 

full system because it neglects the mass associated with the o-set degrees of freedom.  For instance, a 

solid rocket motor application [5] contained modes that were dominated by massive and soft propellant.  

The Static TAM neglected terms that were significant to the analysis and thus did not provide a good 

representation of the system.  The modal TAM was developed to resolve this issue.  The method uses 

the modal expansion equation for the target modes 

 =x φq  (23) 
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where φ  represents the target modes, and q  represents the generalized modal coordinates.  This 

equation can be partitioned into the a-set and o-set degrees of freedom, 

 a a

o o

⎧ ⎫ ⎡ ⎤
=⎨ ⎬ ⎢ ⎥

⎩ ⎭ ⎣ ⎦

x φ
q

x φ
 (24) 

and one can then solve for the modal response vector q , 

 ( ) 1T T
a a a a

−
=q φ φ φ x . (25) 

This requires that the matrix ( )T
a aφ φ  be invertible, so the number of a-set degrees of freedom 

must be greater than or equal to the number of target modes and the target modes must be linearly 

independent when partitioned to the sensor locations.  The transformation matrix for the Modal TAM is 

found by substituting Eq. (25) into the lower partition of Eq. (24), resulting in the following. 

 [ ] T 1 T( )M
o a a a

I
−

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

T
φ φ φ φ

 (26) 

The reduced mass matrix MM is computed in the usual way.  The primary advantage of the Modal 

reduction method is that it is exact for the modes used in the reduction process, so the TAM/FEM 

correlation is always perfect. 

A.1.4. Inverse TAM 
The Inverse TAM was developed by Mayes during the course of this work, and is based upon the 

same principles as the Modal TAM.  One advantage of the inverse TAM is that it can be created from the 

mode shapes directly, without the finite element mass matrix; this can greatly reduce the computational 

expense required to find an optimum sensor set.  The Inverse TAM is derived from the orthogonality 

property of mass normalized mode shapes 

 T
IMa a =φ M φ I  (27) 

where aφ  represents the target mode shapes partitioned to the sensor locations and IMM  is the reduced 

Inverse TAM mass matrix.  The Inverse TAM mass matrix is found by solving Eq. (27).  Typically, aφ is 

not a square matrix, so the pseudoinverse is employed.  The resulting expression for IMM  is 
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 ( ) ( )T
IM a a

+ +=M φ φ , (28) 

where ()+ denotes the Moore-Penrose pseudoinverse.  The reduced mass matrix found using Eq. (28) is 

not full rank because there are generally more sensors than modes, but the method can be modified to 

create a full-rank TAM mass matrix if desired. 

A.2. Sensor Placement Algorithms 
Three techniques are used to generate sensor locations in this work: a modified version of modal 

kinetic energy (Sec. A.2.1), effective independence (Sec. A.2.2) and a new method (Sec. A.2.3) that 

seeks to minimize the condition number of the a-set modal matrix.  The modal kinetic energy method is 

best suited for the Static and IRS TAMs, while the other methods are best suited for the Modal TAM and 

Inverse TAMs.  

A.2.1. Modified Modal Kinetic Energy (KE) 
Modal kinetic energy ranks the dynamic importance of each FEM degree of freedom based on a 

combination of mass and modal displacement.  Assuming that the target modes are mass normalized, the 

fractional contribution of the ith candidate sensor to the jth modal kinetic energy is given by 

 ij ij i jT φ= M φ  (29) 

where 

ijφ  = the ith row of the jth target FEM mode shape  

iM  = the ith row of the FEM mass matrix 

jφ  = jth target mode vector 
 

The average modal kinetic energy for each DOF is computed by forming the matrix T and 

averaging each row (over all the target modes).  In practice, the DOF are typically ranked, and the most 

important ones retained such that approximately 90% of the modal kinetic energy is captured by the 

sensor set. 

A.2.2. Effective Independence (EfI) 
The effective independence algorithm aims to place the sensors such that the target modes are 

as linearly independent as possible, which is required for the Modal TAM.  The sensor placement process 

begins by designating a large set of candidate sensor locations from which the smaller final sensor 

configuration is selected.  There are two approaches that can be taken.  In its original form, the effective 
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independence method iteratively reduces the large candidate set down to the desired number of sensor 

locations [24].  In its most recent form [25], the method starts with a small initial set of sensors and 

expands it to the desired number.  For this work, the original form of the algorithm was used.  The 

candidate sensor set included all translational degrees of freedom.  Kammer [24] suggested that optimal 

sensor placement is achieved when the determinant of the Fisher Information Matrix Q is maximized, 

where 

 T
a a=Q φ φ  (30) 

and aφ is the target mode shape matrix partitioned to the sensor degrees of freedom.  Maximizing the 

information matrix determinant will maximize the spatial independence of the target mode partitions.  It 

will also maximize the signal strength of the target modal responses in the sensor output, which is very 

desirable in the presence of noise.  The effective independence of the ith degree of freedom is given by 

 ( ) ( ) T1
Di a ai i

E −= φ Q φ  (31) 

 0.10.0 ≤≤ DiE  (32) 

where ( )a i
φ is the ith row of the target mode partition matrix, which is associated with the ith candidate 

sensor location.  A value of zero indicates that the ith sensor contributes nothing to the linear 

independence of the target modes or even their observability, and a value of 1.0 indicates that the 

corresponding sensor is absolutely vital to the independence of the target modes and thus cannot be 

deleted from the candidate set. 

A.2.3. Condition Number Sensor Selection (C#) 
The modal filtering process upon which the Modal TAM is based depends upon the mode shape 

matrix for the a-set degrees of freedom, ( )T
a aφ φ , being invertible.  If aφ  has a large condition number, 

then high sensitivity may be encountered when attempting to reconstruct the response at the omitted 

degrees of freedom from the response at the a-set degrees of freedom.  Mayes [26] proposed an 

algorithm that is here named the condition number sensor placement technique that places sensors to 

minimize the condition number of aφ .  One would hope that this would minimize the sensitivity of the 

Modal TAM to errors in the measurements at the a-set degrees of freedom.  Mayes suggested the 
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following approach to obtain a sensor set that minimizes the condition number of aφ .  One begins with an 

initial sensor set, typically a visualization set, of sensors that must be included in the test.  Each of the 

other sensors is then considered one at time (or triax by triax), and the condition number of the mode 

shape matrix with that sensor included is computed and stored.  The process is repeated for all of the 

candidate sensors, and the sensor that reduces the condition number of the mode shape matrix the most 

is retained.  The process can then be repeated to add another sensor or group of sensors until the 

desired number of sensors is reached, or until the condition number ceases to decrease significantly.  

Although this process of locally-optimal steps does not guarantee that a global optimum sensor set is 

obtained, the method has proven very effective; Mayes has used this criterion to optimize sensor 

placement in another work [26], as well as in a few other unpublished applications.  This sensor 

placement strategy, herein denoted the C# method, can be used to construct both Modal and Inverse 

TAMs. 
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