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Abstract

For more than two decades, the Atomic Force Microscope (AFM) has provided valuable

insights in nanoscale phenomena, and it is now widely employed by scientists from

various disciplines. AFMs use a cantilever beam with a sharp tip to scan the surface of

a sample both to image it and to perform mechanical testing. Since the AFM measures

the de�ection of the probe beam, one must �rst �nd the spring constant of the cantilever

in order to estimate the force between the sample and the probe tip. Commonly applied

calibration methods regard the probe as a uniform cantilever, neglecting the tip mass

and any non-uniformity in the thickness along the length of the beam. This work

explores these issues, recognizing that dynamic calibration boils down to �nding the

modal parameters of a dynamic model for a cantilever from experimental measurements

and then using those parameters to estimate the static sti�ness of a probe; if the modes

of the cantilever do not match the expectations, for example because non-uniformity

was neglected, then the calibration will be in error. This work explores the in�uence

of variation in the thickness of a cantilever probe on its static sti�ness as well as its

dynamics, seeking to determine when the uniform beam model that is traditionally

employed is not valid and how one can make sure whether the model is valid from

measurable quantities. In this study, the implications for two commonly applied dynamic

calibration methods, the method of Sader and the Thermal Tune method, were explored.

The results show that the Sader method is quite robust to non-uniformity so long as

only the �rst dynamic mode is used in the calibration. The Thermal Tune method gives

signi�cant errors for the non-uniform probe studied here.
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Nomenclature

Latin letter

A Cross-section area of the cantilever

b Cantilever width

C Damping matrix

dc Amplitude of vibration at the end of the cantilever

E Young's modulus

F Force

h Cantilever thickness

I Second moment of area

K Sti�ness matrix

ks Spring constant

kB Boltzmann's constant

L Cantilever length

M Inertia matrix

m Mass

M Moment

Me E�ective normalized mass

q Generalized coordinates

Q Generalized forces

qz Force per unit length

Q Quality factor

s Distance on a de�ned path

S Shear force

T Temperature

w De�ection

W Static de�ection

x Coordinate along beam axis



Nomenclature V

Greek letter

αn nth frequency parameter

Γ Hydrodynamic function

ρ Cantilever density

ρf Density of the surrounding �uid

Φn nth normalized mode shapes

χ Optical lever factor

ψn nth basis function

ωn nth natural frequency

Subscript

beam Property of the beam

es Equivalent value in the context of the static sti�ness

ek Equivalent value within the sti�ness coe�cients

em Equivalent value wihtin the inertia coe�cients

end Property of an end-loaded cantilever

f, �uid Property of the �uid

free Property of a freely vibrating cantilever

i Imaginary part

measured Measured quantity

nom Nominal value

r Real part

tip Property of the tip

vib Property of vibration

obs Observed value

Superscript

exp Experimental value

model Property of the model

true Actual property

Abbreviations

AFM Atomic Force Microscope

ODE Ordinary Di�erential Equations

PDE Partial Di�erential Equation



Nomenclature VI

PSD Power Spectral Density

SEM Scanning Electron Microscope

SHO Simple Harmonic Oscillator

STM Scanning Tunneling Microscope



1. Introduction

Originally designed to measure conductors and insulators on an atomic scale, the inven-

tors of the Atomic Force Microscope (AFM) envisioned a device that could be applied

to measure forces and examine surfaces in many �elds of science [3]. A great advantage

of the AFM is the fact that the sample of interest need not be coated, measured in vac-

uum or conduct an electrical current. AFMs can also operate under ambient conditions.

Hence, the range of applications for an AFM are enormous and allow for quantitative

research on the nanoscale where other microscopic methods are far beyond their limits.

Today, the AFM is indeed useful to scientists in the �elds of medicine, biotechnology,

chemistry, engineering and many more.

A particularly spectacular example for the potential of the AFM is the imaging of single

atoms within a pentacene molecule [15], shown in �gure 1. It is necessary to perform the

imaging near the absolute zero and under ultra-high vacuum conditions. Moreover, the

tip of the AFM needs to be sharpened by picking up a CO molecule to achieve this level

of resolution. Nonetheless, these dimensions were only explored in a theoretical realm

before. Recently, the AFM also rendered possible the manipulation of single atoms on

a semiconductor surface at room temperature [23]. Sugimoto et al. [23] describe how

they implemented co-called dip-pen nanolithography with the AFM. The tip apex is

wetted with atoms which could then be individually deposited to write patterns on the

semiconductor surface. These examples show how important of a role the AFM plays in

the development of nanoscale electronics and chemistry. What is more, AFM techniques

Figure 1.: AFM image of pentacene molecules with unprecedented atomic resolution
by probing the short-range chemical forces with use of non-contact atomic
force microscopy, performed at IBM Research Zurich.
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Figure 2.: Schematic shape of a cantilever with sharp tip. L denotes the cantilevers
length, b its width. The thickness h of the cantilever is not uniform over
the cantilevers length, but a function h(x) along its length. The cantilever
above is not drawn to scale and the thickness variation is overemphasized.
The de�ection of the cantilever along the x-axis is given by w(x, t).

are commonly employed in microbiology for their advantage over electron microscopy

when measuring living organisms. Only under conditions where the organisms prosper

is it possible to directly observe their cell growth [25]. Hence, measurements on living

cells have to be done in aqueous solutions in order to observe dynamic events on this

scale, such as the interaction between cell membranes and drugs [10]. Structural imag-

ing being one useful application, force spectroscopy is also increasingly being used in

microbiology to measure the nanoscale chemical and physical properties of cells. The

practical potential of force spectroscopy is demonstrated in a study on the nanomechan-

ical properties of cancer cells [9]. AFM indentation on metastatic cancer cells discovered

a signi�cantly lower sti�ness compared to benign cells despite their morphological simi-

larity, suggesting that the AFM might be more e�ective for cancer screening than visual

inspection of the cells.

To achieve this widespread use, AFMs employ a cantilever beam with a sharp tip at

its end that is used to scan the surface of the sample or sense the object of interest in

force spectroscopy. A crucial part of performing AFM measurements is therefore the

calibration of the microscopes. To �nd the force exerted on the tip of the cantilever

beam, the de�ection of the beam is measured and the respective force can be calculated

when the sti�ness of the beam is known.

Today, a range of di�erent calibration techniques exist. Among these, dynamic meth-

ods, which determine the static sti�ness from the cantilevers vibration response, have

practical advantages. Two dynamic methods are commonly applied to determine the

sti�ness of the beam. Sader's method [18] measures the damping of the beam vibrating

in air and uses a model for the �uid-structure interaction to compute the calibration

constant. The Thermal Tune method [16] determines the sti�ness from measurements

of the natural frequency and amplitude of vibration of the beam when it is subject only

to thermal excitation.
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For simpli�cation, these methods usually regard the beam to be a cantilever beam of

uniform thickness and equal mass distribution. They neglect, as it is exempli�ed in

�gure 2, the tip mass of the actual beam and that the beam has a varying thickness

along its length. The objective of this study is a contributution to the development of

a more accurate and reliable model underlying these calibration methods [11].

In particular, the study focuses on the non-uniform shape of the beam and its in�u-

ence on the calibration process. Non-uniformity was examined for static and dynamic

behavior. A Ritz model was created to capture the dynamic behavior of non-uniform

beams. Based on this model, the calibration methods were modi�ed and the previous

methods were compared to these modi�ed schemes. As a result of this comparison,

the deviations between modi�ed and original schemes are presented and the calibration

errors quanti�ed.

1.1. Mode of operation of the AFM

The development of Scanning Probe Microscopy was initiated by the Scanning Tunneling

Microscope (STM) [4] in 1982 at IBM Research in Zurich. The STM uses the tunneling

current between a probe tip and the sample surface to determine the distance between

tip and surface. Thus, both tip and sample must be conductive [17]. The inventors

received the Nobel Prize for this invention in 1986. In the same year, the �rst Atomic

Force Microscope was built by the Nobel laureates.

Compared to its precursor, the AFM works in a much more intuitive way. The AFM

uses a sharp tip mounted on a small cantilever beam to scan over the surface of a

sample. While scanning the sample, the de�ection of the microcantilever is measured

by pointing a laser at its free end and recording the motion of the re�ected laser spot

with a photodiode [10]. Figure 3 provides an image of this mechanism.

With help from a calibration sample, it is possible to determine the relationship be-

tween the voltage output of the diode and the cantilever's de�ection, called de�ection

sensitivity. Various modes of operation have been developed until today. Initially, the

AFM worked in contact mode, where the probe's tip is in contact with the sample

[22]. Dynamic modes of operation prevent the tip from being damaged and worn out.

Dynamic operation implies that the dynamic behavior of the cantilever is exploited to

determine the distance between tip and sample without being in contact. The Van der

Waals forces in�icted on the cantilever have an in�uence on its natural frequency and

its amplitude of oscillation. The changes in vibration behavior are recorded during the

measurements and then exploited to acquire the topology of the sample of interest or

to calculate the acting forces.
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Figure 3.: Schematic description of the AFM mechanism. The laser beam is the
re�ected from the cantilever to the photodiode. The stack of computer-
controlled piezoelements moves the sample under the cantilever probe and
allows the scanning of the surface.



2. Dynamic Calibration Methods

With the de�ection sensitivity determined from imaging a calibration sample, the volt-

age output of the photodiode is related to the de�ection of the cantilever. A second

calibration must be performed if one wishes to relate the measured de�ection to the

tip-sample force, depicted in �gure 4. Since a mechanical model is necessary for this

step, the present study focuses precisely on the second type of calibration.

The spring constant, i.e. the static sti�ness of the cantilever, is the parameter that must

be determined to �nd the forces of interest. The de�ections of the vibrating cantilever

are small and one can assume that they are linear. Therefore, classical beam theory is a

valid approach. Accordingly, the spring constant of a uniform cantilever, ks = Ebh3/4L3,

depends on its Young's modulus E and it's geometry, with b being the cantilever's width,

L its length [21]. In detail, ks = 3EI/L3, where I is the beam's second moment of area I =

bh3/12. The thickness of the beam, h, is typically assumed to be uniform along the length.

Due to considerable variations in microfabrication, the properties of the cantilevers,

especially Young's modulus, thickness and mass distribution, cannot be determined

very easily. Calibration is therefore of crucial importance in force spectroscopy, and

even in routine contact-mode or friction force imaging, if one needs to know the force

applied by the probe during imaging.

In the process of determining the static sti�ness of an AFM probe, one faces the challenge

that the cantilevers and especially their tips are very delicate structures. A sharp tip is

usually very important for AFM measurements and the static loading can in�ict damage

x

z

F

s

Figure 4.: The static sti�ness is the relationship between the path distance of the
cantilever's de�ection s and the force F exerted on the cantilever's tip that
is causing the de�ection.
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to the probe. To be practical, AFM calibration methods must not damage the probes

in the calibration process and one must be able to perform them quickly and without

the need for additional complex equipment other than the AFM. Moreover, e�ective

calibration methods must be applicable under ambient conditions, as the AFM usually

operates at such. Thus, a wide range of non-invasive methods have been developed [5],

such as the method by Cleveland et al. [7] where the spring constant can be determined

by measuring the cantilevers resonant frequencies before and after adding small masses

at its end. This method entails the meticulous task to add and remove microscopic

masses to the cantilever. To circumvent this issue, dynamic methods that are quicker

and easier to perform have prevailed. The focus of this work is on two non-destructive,

dynamic calibration methods, the Sader method and the Thermal Tune method. Both

methods need no extra equipment, as the AFM itself can measure all quantities needed

for calibration.

2.1. Sader Method

The frequency response of a cantilever beam was commonly simpli�ed to the response of

a simple harmonic oscillator (SHO) and many dynamic calibration techniques are based

on this idea. When regarded as such, the spring constant of the cantilever depends on

its mass, i.e. its density and dimensions, and radial natural frequency.

ks = me ω
2
1 =Me ρ hbL ω

2
1 (1)

ks denotes the beam's static sti�ness, ω1 its �rst radial resonant frequency, and ρ de-

notes its density. The e�ective mass me of the cantilever is used to bring the model in

alignment with the simpli�cation of being a SHO. An extensive discussion of Me, the

beam's normalized e�ective mass, is given by Sader et al. [20]1.

The dimensions of an AFM probe range between 100 to 500 µm in length, from 15

to 50 µm in width and often less than a micrometer in thickness. Therefore, the can-

tilevers planview dimensions, i.e. the width and length, can be determined using optical

microscopy, and thus it does not pose a limitation for the calibration. Nonetheless, accu-

rately determining the thickness of the cantilever typically requires the use of an electron

microscope. Scanning Electron Microscopy (SEM) is a very expensive technique and the

process might in�ict damage to the probe and severly impair further usage. Moreover,

the density of silicon nitride cantilevers is highly variable and assuming it as a given

parameter would introduce a large error into the calibration process.

1Me is approximately equal to 0.2427 for L/b > 5.
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Figure 5.: The vibrating cantilever moves the �uid surrounding it, depicted by the blue
wavy lines.

On another note, equation (1) only holds true if the cantilever is vibrating in vacuum. As

shown in �gure 5, an oscillating cantilever immersed into a �uid moves the surrounding

�uid as it vibrates, creating an inertial loading on the beam, a virtual mass. The

resonance frequencies of an immersed cantilever are lower compared to a cantilever in

vacuum due to the inertial loading. The surrounding �uid also has an external damping

e�ect on the cantilever. This lowers the cantilever's quality factor Q by reducing the

peak amplitude and broadening its resonance curve1. It also a�ects the phase response

by reducing its steepness [12].

Sader developed his method by taking the e�ects of the surrounding �uid, in most

cases air, on the oscillating cantilever into account [20]. He uses the natural frequency

and Q factor of the �rst mode of the cantilever to determine its static sti�ness. Sader

accounted for these e�ects by including a hydrodynamic force as part of the loading on

the vibrating cantilever [18]. According to Sader, the complex amplitude F (x, ω) of the

harmonic load F̂ (x, t) = F (x, ω)eiωt consists of the driving load and a hydrodynamic

force.

F (x, ω) = Fhydro(x, ω) + Fdrive(x, ω) (2)

Fhydro(x, ω) =
π

4
ρf ω

2b2Γ (ω)w(x, ω) (3)

The hydrodynamic force is a function of vibration frequency of the cantilever ω, the

density of the surrounding �uid ρf, the beam's width and the normalized hydrody-

namic load, called hydrodynamic function Γ (ω), which can be obtained from solving

the equations of motion for the surrounding �uid [18, 19]. As mentioned above, it can

be seperated into an inertial term, the real part of the hydrodynamic function Γr(ω),

1The quality factor Q is a measure for the damping ratio ζ of the system, ζ = 1
2Q .
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and a dissipative term given by its imaginary part Γi(ω). The derivation according to

Sader [19] yields

ks,Sader = 0.1906ρf b
2L ΓiQω

2
1. (4)

Some information on the cantilever's geometry is still required to use the Sader method,

namely the planview dimensions of a rectangular cantilever which govern the e�ects of

the �uid for �exural oscillations. However, Sader assumed a uniformly thick cantilever

in his derivation and did not take any tip mass into account. Allen et al. [2] pointed

out that these assumptions are not accurate and, depending on the mode used for

the calibration, can lead to errors of considerable extent in the calibration process.

They quanti�ed the error in the sti�ness estimated by the Sader method due to an

unmodeled rigid tip and proposed a method that can be used to estimate the tip mass

from measurements of the natural frequencies of the probe. The tip was found to cause

considerable calibration error for some AFM probes if not correctly accounted for. This

work explores the e�ect of a non-uniform thickness along the cantilever's length on

its dynamic properties and the implications for the accuracy of dynamic calibration

methods. The tip at the cantilever's end is also taken into account.

2.2. Thermal Tune Method

The Thermal Tune method, �rst proposed by Hutter and Bechhoefer [16], exploits the

equipartition theorem to determine the spring constant. The theorem states that the

kinetic or potential energy of each mode of a cantilever when excited by only thermal

noise, induced by Brownian motion (as seen in �gure 6), is equal to 1/2 kBT [5], with T

being the absolute temperature and kB being Boltzmann's constant. This relationship

is used to relate the mean-square thermal noise oscillation amplitude with the spring

constant,

〈E〉 = 1

2
ks〈d2c〉 =

1

2
kBT, (5)

with 〈d2c〉 being the mean-square amplitude of the cantilever's thermal �uctuation.

Although the method appears quite simple, there are a number of important details

that must be accounted for, as described by Cook et al. [8]. Unlike the assessment of

the de�ection sensitivity, which is measured under static conditions, the Thermal Tune

calibration is performed on a vibrating cantilever. There is a discrepancy between the

way a statically de�ected and a vibrating cantilever re�ect the laser. With respect to this

issue, the method was enhanced by Butt and Jaschke [6]. Additionally, the laser spot is
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Figure 6.: The source of thermal noise vibrations is the Brownian motion of the silicon
nitride lattice the cantilever consists of.

not in�nitely small, it rather extends over a section of the beam along it's length. Again,

the model the existing method is based on makes the assumption that the cantilever

has a constant thickness and no tip at its end.

2.3. Measuring the vibration response of a

microcantilever

Generally, the �rst step of calibration is the capturing of a power spectrum of a freely

vibrating cantilever with no excitation acting on it. While the Sader method can also

be performed for a driven cantilever, the Thermal Tune method relies on only thermal

excitation. The measurement of the power spectrum can be performed with the AFM

itself. In many cases, it is useful to employ an oscilloscope with a high sampling rate.

The captured signal is Fourier transformed to the detector-voltage power spectral density

(PSD). The required natural frequency and the quality factor can be obtained from this

voltage PSD by �tting a SHO response, R, with an added background term B to the

signal, depicted in �gure 7:

B +R(ω) = B +
Anω

4
n

(ω2 − ω2
n)

2 + (ωωn

Qn
)2

(6)

The Thermal Tune calibration requires an extra step. The amplitude of the thermal

vibration response is measured in voltage. With an accurately determined de�ection

sensitivity, the cantilever's response can be converted to actual de�ection. A force

curve is acquired with the cantilever to perform this conversion, and the mean-square

de�ection is calculated from the converted response signal.
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Figure 7.: Power spectral density of the thermal vibration response of a microcantilever
with the respective �t to cantilever's �rst mode.



3. In�uences of Non-Uniformity

Many commercially available AFM probes are signi�cantly non-uniform along their

lengths. For example, the SEM images shown in �gure 8 were obtained from a CSC38-B

cantilever manufactured by Mikromasch. The nominal thickness of the beam is given by

the manufacturer as 1µm. The SEM images indicate that the thickness of the cantilever

is not uniform but has a considerable taper toward the tip. It is almost three times as

thick as nominal at the point where the tip starts. The pro�le of the beam was esti-

mated using these SEM images and will be used to quantify the e�ect of this thickness

non-uniformity on calibration for this particular probe, with a view to extending the

methodology to other probes.

The mechanics of the measured cantilever pro�le will also be compared to two di�erent

pro�les that approximate it with a small number of parameters. The �rst models the

non-uniformity with a section that has constant thickness, hnom with a taper starting

at x0, and reaches the same thickness as the real cantilever at the free end. This pro�le

will be called the �partially linear� pro�le. The second models the non-uniformity as

a linearly increasing thickness. This pro�le cannot mimic the prominent increase in

thickness that the real pro�le has at the end of the cantilever, so that part is regarded

as an extra mass without rotary inertia and lumped at the end of the cantilever. This

latter pro�le shall be referred to as �linear and lumped�. The chosen pro�les and the

actual pro�le from the SEM images are depicted in �gure 9. Both parametrizations

are de�ned by only three parameters, which are given in table 1. The �linear and

lumped #2� pro�le is a result of the sensitivity analysis described in section 3.2.2.

Its parameters were chosen to match the experimental result of the frequency spacing

more closely, whereas the parameters for the "linear and lumped" pro�le were chosen

based on the SEM images shown previously. More complicated pro�le models could be

envisioned, but then one would have more free parameters that must be either assumed

or determined.



CHAPTER 3. INFLUENCES OF NON-UNIFORMITY 8

(a)

(b)

Figure 8.: SEM images of a silicon nitride cantilever beam. In (a), the tip and a portion
of the cantilever are shown. In (b), a detail near the tip is shown where it
can be observed how the thickness of the cantilever increases from 1.830µm
to 3.472µm toward the tip.

Pro�le parameters
Partially linear hnom = 1.0µm h(1) = 3.876µm x0 = 0.83
Linear and lumped h0 = 1.218µm h1 = 0.275µm ∆m = 5.792 · 10-12 kg
Linear and lumped #2 h0 =1.193µm h1 = 0.302µm ∆m = 6.372 · 10-12 kg

Table 1.: The parameters of the two chosen pro�les �tted to the real cantilever pro�le.
The de�nition of the parameters is given in section A.1 of the appendix.
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Figure 9.: Di�erent thickness pro�les of the cantilever beam. The estimate of the
actual pro�le and two �tted counterparts are shown.

3.1. Static Properties

In order to determine how well each of these models captures the static sti�ness of the

cantilever, an analytical solution was derived for the spring constant of a cantilever with

an arbitrary thickness variation along its length. The de�ection curve of the cantilever

is given by w′′ = M(x)/EI(x), with M being the bending moment acting on the cantilever.

Loaded with a static tip force, the bending moment is linear. Thus, one can express the

spring constant as follows (for a thorough derivation, see section A.2 in the appendix)

ks =
Ebh3es
4L3

, (7)

h3es = −
1

3

[∫ 1

0

∫ x̃

0

(x̃− 1)

h(x̃)3
dx̃dx

]−1
. (8)

This expression is comparable to the expression for a uniform cantilever only that the

equivalent thickness hes, used to describe a non-uniform cantilever, is the thickness a

uniform cantilever of the same static sti�ness would have.

The static sti�nesses computed for each of the probe models using this approach are

shown in Table 3. The manufacturer estimated the spring constant of the cantilever at

0.03 N/m, presumably based on the nominal thickness of 1µm, and the analytical model

agrees well with this. However, the manufacturer also states that the spring constant

could be anywhere in the range from only a third to more than twice the nominal value.
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Cantilever Model ks [N/m]
Uniform + Tip 0.0278
Measured pro�le 0.0580
Partially linear 0.0278
Linear and lumped 0.0585
Linear and lumped #2 0.0560
Manufacturer's speci�cation:
ks = 0.03 (0.01− 0.08) N/m

Table 2.: Static sti�ness, ks, estimated for each of the models of the thickness pro�le.

In fact, the pro�le from the SEM images has a spring constant of 0.058 N/m which is

almost twice the nominal value. The static behavior of the other parameterizations of

the model is entirely di�erent from each other. The considerable taper toward the free

end of the beam has no noticeable e�ect on the beam's static sti�ness as the �partially

linear� spring constant is equal to that of the uniform cantilever. On the other hand,

the static sti�ness of the "linear and lumped" pro�le agrees very well with that of the

measured pro�le.

3.2. Dynamic Properties

3.2.1. Analytical Mode Shapes of a Uniform Cantilever Beam

Dynamic calibration methods are derived from the equations of motion of an oscillating

cantilever and depend greatly on its modal properties, namely the mode shapes of the

cantilever. Thus, the e�ect of non-uniformity on the dynamics of the calibration model

are of utmost importance. A derivation of an analytical solution of a uniform beam

with a tip helps in the further examination of these e�ect. Thus, the uniform case was

considered �rst.

The �exural motion of a beam is one of the most traditional problems in Mechanics of

Materials [24]. The Euler-Bernoulli beam theory is a basic approach to the problem, by

combining strain-displacement relationships and a constitutive law with the equations

for dynamic equilibrium to yield the displacement �eld of the beam. As the length of the

beam is much longer than it's cross-sectional dimensions, the classical Euler-Bernoulli

beam theory can be used. Hence, the equation governing the displacement �eld1 is

∂2

∂x2

(
EI

L4

∂2w

∂x2

)
+ ρAẅ = qz , (9)

1Dotted quantities represent a derivative with respect to time t: ẅ = ∂2w/∂t2
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where A the cross-section area of the cantilever, and qz denotes the force per unit

length loading [14]. For now, these properties are considered to be constant along the

beam's length. One can also assume that no external loads act on the beam since the

eigenmodes of the strucuture are of interest at this point. It is also worth noting that the

non-dimensional coordinate x is used for simpli�cation. With a seperation of variables

approach, the problem can be simpli�ed1 to an ordinary di�erential equation,

ψ′′′′ − α4
nψ = 0 , with αn =

4

√
ρAω2

nL
4

EI
, (10)

where αn denotes the n
th frequency parameter. Equation (11) is the well-known solution

to this problem.

ψn(x) = sin(αnx) + sinh(αnx) +Rn [cos(αnx) + cosh(αnx)] (11)

Rn = − sin(αn) + sinh(αn)

cos(αn) + cosh(αn)

The correct application of boundary conditions is crucial for the problem as they deter-

mine the modal parameter αn [2]. At the left boundary, the �xed end has no de�ection

or rotation. The boundary conditions on the right end are more complex. With a tip at-

tached to the beam, shear forces and moments act on the cantilever. A balance of these

loads yields the adequate set of boundary conditions. A detailed discussion is given in

the appendix (see section A.3). The mass and inertia of the tip, which is being treated

as a cone of height H and base radius R, are paremeters in the boundary conditions

and they are given by [13]

mtip =
π

3
ρR2

tipHtip , Jtip =
3

80
mtip

(
4R2

tip + L2
tip

)
. (12)

Applying the boundary conditions correctly, one obtains the modal parameters that

govern the mode shapes. The mode shapes of the cantilever with a tip whose mass is

10.3 per cent of the beam's mass are given in �gure 10 [2, 11]. Recalling the de�nition

of the modal paramteres in eq. (10), the natural frequencies of the cantilever can also

be determined at this point. The values for ωn and αn are given in table 3 and the �rst

four mode shapes can be seen in �gure 10.

1Primed quantities represent a spatial derivative with respect to x: ψ′′′′ = ∂4ψ/∂x4
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Modal parameter αn
n 1 2 3 4
αn 1.7380 4.4239 7.4828 10.5629
ωn/2π 9.088 kHz 58.846 kHz 168.192 kHz 334.677 kHz

Table 3.: Modal parameters

Figure 10.: Analytical mass-normalized mode shapes of a uniform cantilever with tip.
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3.2.2. Ritz Method

Since the beam is a continuous structure, a Ritz model, which discretize the continuous

beam into a dynamic system with a �nite number of degrees of freedom, was created

for each of these pro�les in order to calculate mode shapes and natural frequencies for

the di�erent pro�les. The equations of motion governing the motion of the cantilever

are given in (13), where q denotes the frequency domain amplitude of the generalized

coordinates [14]. The inertia and sti�ness of the beam as well as the virtual mass added

by the �uid and the dissipative e�ect of the �uid are included in the calculations (see

section A.4 in the appendix for details).

−ω2[M]q+ iω[C]q+ [K]q = 0 (13)

The Ritz method can be used to obtain approximate solutions for the mode shapes and

natural frequencies of continuous structures. Here this approach is used to �nd the

approximate mode shapes of non-uniform cantilevers. However, later we shall make use

of the fact that a single term Ritz model is an exact model for the contribution of a

single mode to a structure's response if the mode shape used in the Ritz series is exact.

The analytical model gives the mode shapes of a uniform cantilever [14] with a rigid tip

on its free end. Those analytical mode shapes will be used in this work as basis functions

for the Ritz method in order to �nd the modes of the cantilever for each of the thickness

pro�le models in Table 1. The parameters αn depend on the boundary conditions which

include the e�ect of the tip. In order to account for non-uniformity, the model used here

allows for a variable thickness along the cantilever's length, h = h(x).

Figure 11 shows the mode shapes of a cantilever with a tip mass of mtip = 2.638 ng and

a uniform nominal thickness compared to those with the same tip and the thickness

pro�le estimated from the SEM images. The third set of mode shapes shown are for

the "linear and lumped #2" model described in table 1. The mode shapes in Figure

11 indicate lower amplitudes of vibration at the end of the beam for the �linear and

lumped #2� cantilever pro�le than for the other two because the additionally lumped

mass increases the inertia of the beam at the free end. Also, the higher the order of the

mode, the more the respective mode shapes are curved, in particular close to the free

end of the beam, so thickness non-uniformity has a more prominent e�ect on the higher

modes.

The spacings between the natural frequencies for all of these models are shown in Table

4. By comparing the frequency spacings rather than the frequencies, the comparison

is not dependent on the modulus, density, and other physical properties of the probe.

The analytical model of the uniform cantilever with tip underestimates the spacings
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(a)

(b)

Figure 11.: Mode shapes of the cantilever. The dashed lines depict the analytical mode
shapes of a uniform cantilever with tip - solid lines are Ritz estimates of
the mode shapes for the measured pro�le and for the �linear and lumped
#2� pro�le. The odd modes are shown in (a), even modes in (b).
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ω2/ω1 δexp ω3/ω1 δexp ω4/ω1 δexp

Experimental [2] 7.806 - 23.572 - 48.490 -
Uniform + Tip 6.475 -17.05% 18.507 -21.49% 36.826 -24.05%
Measured pro�le 7.807 0.01% 23.665 0.39% 48.409 -0.17%
Partially linear 7.813 0.09% 23.698 0.53% 48.964 0.98%
Linear and lumped 7.658 -1.89% 23.056 -2.19% 46.771 -3.54%
Linear and lumped #2 7.812 0.08% 23.642 0.30% 48.042 -0.92%

Table 4.: Frequency spacings of the cantilever beam. δexp is the deviation of the re-
spective frequency spacing compared to the experimental value.

between the modes considerably and with increasing deviation for higher modes. The

model that uses the measured pro�le reproduces the frequency spacings with a very high

accuracy. The partially linear pro�le is almost as accurate as the measured pro�le while

the �linear and lumped� pro�le presents higher deviations, but both are signi�cantly

more accurate than the uniform model with a tip. The parameters for the �linear and

lumped #2� model were chosen to minimize the di�erence in the frequency spacings, so

the agreement is excellent. One can achieve good agreement in terms of the frequency

spacings for both ways of parameterization. However, as shown below, the partially

linear pro�le was found to erroneously represent the static properties of the measured

pro�le, so the �linear and lumped� pro�le is of primary interest. Figure 12 depicts the

sensitivity of the �linear and lumped� pro�le. The point of origin for the analysis was

the initial set of parameters for this pro�le given in Table 1 and all three parameters

were varied between 90 to 120% of their initial value. The starting thickness h0 of

the pro�le has proportionally higher in�uence on the frequency spacings than the other

two parameters and is therefore varied to a lesser extent. The graph shows that it is

not possible to match the frequency spacing of the measured pro�le in all four modes

exactly, but it is very well possible to lower the deviation considerably. The second set

of parameters for the �linear and lumped� pro�le given in Table 1 were found by using

this sensitivity information to achieve better agreement.



CHAPTER 3. INFLUENCES OF NON-UNIFORMITY 16

Figure 12.: Variations in h0, h1 and ∆m parameters of the �Linear and Lumped� pro-
�le showing the sensitivity of the frequency spacing with respect to these
parameters.



4. Modi�ed Calibration Methods

4.1. Modi�cation of the Sader Method

The Sader method can be modi�ed to include the e�ect of a massive tip and a non-

uniform thickness with the help of the Ritz method [2]. To this end, we introduce an

equivalent thicknesses with respect to sti�ness and inertia, h3ek,n and hem,n which are

de�ned as the following

h3ek,n =

∫ 1

0
h(x)3 (ψ′′n)

2 dx∫ 1

0
(ψ′′n)

2 dx
hem,n =

∫ 1

0
h(x) (ψn)

2 dx∫ 1

0
(ψn)

2 dx
. (14)

The equivalent thicknesses, hem and hek, are the thicknesses of a uniform cantilever

would have to produce the same sti�ness and inertia coe�cients in a single-term Ritz

model as the non-uniform beam. These coe�cients are introduced into the calibration

method.The reader is referred to the appendix (section A.5) for a step-by-step derivation

of the modi�ed expression for the spring constant. Following the algebra given in this

derivation, one obtains a modi�ed equation for the static sti�ness of the probe.

ks,Sader =
3π

4
ρf b

2LΓi

(
hes
hek,n

)3
mnn

knn
Qω2

n (15)

This expression is also valid for a uniform probe with a rigid tip, as presented in [2],

and for a uniform probe without a tip it reduces to the formula given by Sader. If

the thickness pro�le of a probe is known, then one can compute hes, and with the

mode shapes one can compute mnn, knn, and hek,n. Then, this expression would give

an accurate estimate of the spring constant, even in the presence of non-uniformity.

Unfortunately, these quantities are not known in practice, so it is di�cult to determine

the needed constants. One must, instead, make a simplifying assumption regarding

the cantilever, such as uniform thickness, in order to obtain an estimate for ks. Our

primary purpose for deriving eq. (15) is to estimate the error incurred by such an

assumption. Consider an exact solution for the thickness pro�le and mode shapes.

Denote the parameters for that model as hes, hek,n, mnn, and knn. These parameters

would produce the true static sti�ness if used in conjunction with the measured Q and
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δks Mode 1 Mode 2 Mode 3 Mode 4

Uniform No Tip - Measured -2.22% 2.62% 6.24% 14.23%
Uniform + Tip - Measured -2.71% 4.14% 15.91% 25.38%
Linear and Lumped - Measured -0.06% 5.91% 10.52% 15.43%
Linear and Lumped #2 - Measured -0.22% 6.00% 9.66% 14.09%

Table 5.: Error in the static sti�ness estimated by the method of Sader for various
pro�les as a function of the mode number used in the calibration. The model
based on the measured pro�le was taken to be exact.

ωn. An approximate model gives di�erent values for these parameters, which shall be

distinguished with hats (ˆ). Then, the error incurred in the Sader method due to the

simplifying assumption is given by the following.

δks,Sader =
k̂model
s − ktrues

ktrues

=

(
ĥes
hes

hek,n
ĥek,n

)3
m̂nn

mnn

knn

k̂nn
− 1 (16)

The Ritz mode shapes found previously for the measured pro�le were found to corre-

spond well with the experimentally measured mode shapes shown in [1], so that model

will be assumed to be exact and used to compute the error in approximating the probe

with each of the models listed in table 1. The resulting relative errors for each of the

models are given in table 5 and visualized in �gure 13. One observes that each of the

models is capable of estimating the static sti�ness of the probe to within 3% if the

�rst mode is used in the calibration, and to within 6% if the second is used, although

the errors become signi�cantly larger if modes 3 or 4 are used. These modes are more

sensitive because the tip mass and the sti�ened section of the probe near the tip begins

to have an important e�ect on the mode shapes. It is also interesting to note that the

original Sader model of a uniform beam without tip has smaller deviations from the

measured pro�le than the model with a tip. Considering that the tip adds inertia to the

model, Sader's original uniform cantilever is less sti� and lacks the inertial e�ect of the

tip at the same time, leading to a mutual compensation in the calibration process and

less deviation.

4.2. Modi�cation of the Thermal Tune Method

The Thermal Tune method is based on equivalence between the mean-square potential

energy of the cantilever and 1/2 kB T .
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Figure 13.: Visualization of the errors for the Thermal Tune calibration given in table
5.

〈Evib〉 =
1

2
kB T =

1

2

〈∫ L

0

EI(x)

(
∂2w

∂x2

)2

dx

〉
(17)

The kinetic energy is related to the motion of the tip of the cantilever, which is related

to the output signal of the photodiode. However, the sensitivity of the photodiode is

measured under static conditions and the shape of a cantilever under static loading is

di�erent from its shape when vibrating freely. This is accounted for using the method

described by Cook et al. [8], which multiplies the de�ection d∗c measured by the pho-

todetector with the factor χ to yield the actual de�ection dc needed for the calibration.

The slope of the cantilever at xl, where the laser is re�ected on the beam, determines

the laser spot's position on the photodetector [8]. Hence, χ depends on the ratio of the

end-loaded slope W ′
end to the freely oscillating slope W ′

free,

χ(xl) =
W ′

end(xl)

W ′
free(xl)

. (18)

W is the cantilever's normalized shape1, i.e. the normalized de�ection curve in case of the

end-loaded cantilever [8] and the normalized mode shape of a freely vibrating cantilever

1Normalized shape implies W (1) ≡ 1.
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is given by Wfree(x) = ψ(x)/ψ(1). Following the same approach used to derive the

modi�ed Sader method (see section A.6 in the appendix for the Thermal Tune method),

the Thermal Tune relationship between the static sti�ness and the probe parameters is

[1]

ks,Thermal =
3kBT

〈(d∗c)2〉

(
hes
hek,n

)3(
ψ′n(1)

2

knn (W ′
end(1))

2

)
. (19)

Likewise, the error induced by non-uniformity in the Thermal Tune method is

δks,Thermal =
k̂model
s − ktrues

ktrues

=

(
ĥes
hes

hek,n
ĥek,n

)3
(
W ′

end

Ŵ ′
end

∣∣∣∣∣
x=1

)2(
ψ̂′n(1)

ψ′n(1)

)2
knn

k̂nn
− 1, (20)

where the hats ( ˆ ) once again denote the entities for the model of interest. The

normalized de�ection curve and its derivative for a uniform cantilever are known [8].

The derivative of the de�ection curve for a cantilever with an arbitrary thickness pro�le

is calculated using the analytical model for the static de�ection of a non-uniform model,

which was also used to derive eq. (8).

W ′
end(x) =

∫ x
0

(x−1)
h(x)3

dx∫ 1

0

∫ x̃
0

(x̃−1)
h(x̃)3

dx̃dx
(21)

The de�ection curves and their derivatives with respect to x are given in �gure 15 for

both the uniform and the measured thickness pro�les. It can be observed that the slopes

are considerably di�erent near the free end, and this di�erence is squared in eqs. (19)

and (20), so it may be important. The rotation of the mode shapes, ψ′n(1), i.e. the shape

of the freely vibrating cantilever, also induces error in the Thermal Tune method. The

slope at the free end of the cantilever is in�uenced by the pro�le of the beam, as was

illustrated in �gure 11.

Table 6 presents the errors in the Thermal Tune estimated spring constant once again

using the thickness pro�le from the SEM images as the �true� model, also depicted in

�gure 14. In contrast with the Sader method, the thermal method is signi�cantly in error

if a uniform probe model is used, even if the �rst mode is used in the calibration. The

error becomes truly unacceptable if the second or higher modes are used. In contrast,

the linear and lumped models are acceptably accurate for the �rst mode but even they

become very inaccurate if the third or higher modes are used.
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δks Mode 1 Mode 2 Mode 3 Mode 4

Uniform No Tip - Measured 15.31% 72.79% 160.93% 287.70%
Uniform + Tip - Measured 22.53% 71.88% 134.93% 214.03%
Linear and Lumped - Measured 6.32% 13.82% 35.79% 73.20%
Linear and Lumped #2 - Measured 4.64% 8.87% 28.21% 63.07%

Table 6.: Error in the static sti�ness estimated by the Thermal Tune method for various
pro�les as a function of the mode number used in the calibration. The model
based on the measured pro�le was taken to be exact.

Figure 14.: Visualization of the errors for the Thermal Tune calibration given in table
6.
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(a)

(b)

Figure 15.: De�ection curves of uniform and non-uniform cantilevers under static load-
ing in (a) and the derivative with respect to x, i.e. the slope of the can-
tilever, in (b).



5. Conclusion and Outlook

The thickness pro�le of a cantilever has a decisive in�uence on its static sti�ness as

well as its mode shapes. Two common AFM calibration methods were analyzed to see

how these e�ects in�uence the calibration process. The Sader method was found to

accurately estimate the static sti�ness of the probe under study, but only if the �rst

mode was used in the calibration. One can presume that similar trends would hold for

other probes so long as the non-uniformity is not too drastic, thus the Sader method

seems to be quite a robust choice. The Thermal Tune method, on the other hand,

depends on the rotation of the cantilever under static and dynamic loading and so it

was found to be very sensitive to the probe's non-uniformity. These results suggest

that the thermal method should not be trusted unless the probe of interest is known

to be uniform. A few simple models were explored in an e�ort to capture the e�ect of

thickness non-uniformity. The models were found to reproduce the natural frequencies

and mode shapes of the probe reasonably well, but calibration is sensitive to the model.

The �linear and lumped� model did reduce the error in the Thermal Tune calibration to

a certain extent, but even then the results showed that one may only be able to trust the

calibration based on either the �rst or perhaps the second mode of the probe. This study

presents an approach to analyze calibration errors due to non-uniformity regarding static

and dynamics properties. Future works should seek to characterize other probes as was

done here for the CSC38 probe, to see whether any of the models proposed here can

account for the range of commonly encountered non-uniformities with su�cient �delity.
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A. Appendices

A.1. Parameterized pro�les

The linear and lumped pro�les can be described by the following equation in terms of

the thickness variation of the cantilever. The parameters of this pro�le are a certain

base thickness h0, the linear taper h1 and an extra lumped mass ∆m.

h(x) = h0 + h1x , 0 ≤ x ≤ 1 (22)

The lumped inertial contribution ∆m of the considerable taper that cannot be mimicked

by a moderate taper is calculated with the help of the measured pro�le.

∆m = ρbL

∫ 1

0

hmeasured(x)− h(x)dx (23)

The partially linear pro�le is given by equation (24). The parameters of this particular

pro�le are a certain nominal thickness hnom, the thickness h(1) at the end of the beam

and the position x0 where the taper starts.

h(x) =

hnom 0 ≤ x < x0

hnom + h1 (x− x0) x0 ≤ x ≤ 1
with h1 =

h(1)− hnom
1− x0

(24)

A.2. Analytical approach for the static sti�ness of a

non-uniform cantilever

Following classical beam theory, the spring constant1 of a uniform cantilever is dependent

on the beam's dimensions and it's Young's modulus, ks = Ebh3/4L3. The thickness h of

the beam must be uniform along the length for this expression to hold. For the respective

expression that also holds for rectangular cantilevers of an arbitrary thickness, one must

analyze a statically end-loaded cantilever. The de�ection of an Euler-Bernoulli beam

1In detail, ks = 3EI/L3, where I is the beam's second moment of area I = bh3
/12.
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Figure 16.: Cantilever beam of arbitrary thickness and a schematic of the sign conven-
tion used in the derivation.

under static loading is governed by the moments acting on the beam [24].

w′′(x) = −M(x)

EI(x)
⇒ w(x) = L2

∫ ∫
M(x)

EI(x)
dxdx+ c1x+ c2 (25)

For a clamped-free cantilever, de�ection and rotation of the beam do not occur at the

left boundary, where Dirichlet and von Neumann boundary conditions apply, w(0) =

0, w′(0) = 0. These boundary conditions yield c1 = 0, c2 = 0. Since the cantilever is

under static loading by an arbitrary constant force F acting at the cantilever's end, the

bending moment is linear, meaning M(x) = FL(x− 1). Thus,

w(x) = FL3

∫ ∫
(1− x)
EI(x)

dxdx. (26)

The de�nition of the spring constant is force per unit de�ection, ks = F/w. From equation

(26), it is apparent that

ks =
1

L3

[∫ 1

0

∫ x

0

(1− x̃)
EI(x̃)

dx̃dx

]−1
=

Eb

12L3

[∫ 1

0

∫ x

0

(1− x̃)
h(x̃)3

dx̃dx

]−1
.

(27)

Based on this result, the equivalent thickness hes can be de�nied. It is the thickness of

a uniform cantilever with the same spring constant as the non-uniform cantilever under

consideration. The spring constant of a non-uniform cantilever is therefore

ks =
Ebh3es
4L3

, (28)

h3es =
1

3

[∫ 1

0

∫ x

0

(1− x̃)
h(x̃)3

dx̃dx

]−1
. (29)
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A.3. Solution for the Euler-Bernoulli beam equation

with a tip

The �exural motion of an Euler-Bernoulli beam is governed by the following partial

di�erential equation (PDE)

∂2

∂x2

(
EI

∂2w

∂x2

)
+ ρAẅ = qz , (30)

where E denotes Young's modulus, I the area moment of inertia and ρ and A are the

density and the cross-section area of the cantilever, repectively [14]. An approach for

a cantilever with a varying thickness is given in section 3.2.2. At this point, these

properties are considered to be constant. For a freely vibrating cantilever, the force

per unit length loading, qz, is zero. Moreover, the eigenmodes of the structure are of

interest, so we apply no external loads to the beam.

The general Euler-Bernoulli beam theory considers the �exural motion of the beam to

be small. This is certainly the case for an AFM probe, where vibration amplitudes are

in the order of magnitude of a few nanometers. Shear deformation of the beam as well as

the rotary inertia are neglected in the Euler-Bernoulli beam. This results in inaccuracies

when considering higher modes. The �rst four modes of the structure were analyzed in

this study, though.

A separation of variables approach is employed to convert the problem into a ordinary

di�erential equation (ODE).

w(x, t) = Re
{
ψ(x) eiωt

}
(31)

Thus, the approach yields

∂4ψn(x)

∂x4
+ α4

nψn(x) = 0 , with αn =
4

√
ρAω2

nL
4

EI
. (32)

A general solution for ψn(x) is given by

ψn(x) = C1 sin(αnx) + C3 sinh(αnx) + C2 cos(αnx) + C4 cosh(αnx) (33)

At this point, we know neither the coe�cients Cj nor the modal parameter αn. The

solution still remains to satisfy the boundary conditions. Therefore, the choice of bound-

ary conditions is crucial as they not only determine both the modal parameter αn and

the parameters Cj, but also the properties of the tip attached to the end of the can-
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tilever are incorporated into the problem through the boundary conditions. Since the

left boundary is a �xed end, there is neither de�ection nor rotation at this end. These

Dirichlet and von Neumann boundary conditions, which apply for a �xed-free cantilever,

allow the elimination of two of the parameters Cj.

w(0) = 0,
∂w

∂x

∣∣∣∣
x=0

= 0 ⇒ ψ(0) = 0,
∂ψ

∂x

∣∣∣∣
x=0

= 0 (34)

By substituting eq. (33) into these boundary conditions, two parameters can be elim-

inated since C4 = −C2 and C3 = −C1. Therefore, the analytical mode shape of the

cantilever is

ψn(x) = C1 [sin(αnx)− sinh(αnx)] + C2 [cos(αnx)− cosh(αnx)] . (35)

For a regular clamped-free cantilever, the right boundary with no acting moments and

forces could simplify the problem further. In this particular case though, the inertial

e�ects of the tip attached to the end of the cantilever must be taken into account

in the boundary conditions as they alter the mode shapes and natural frequency of

the vibrating beam. To this end, a balance of shear forces and moments at the right

boundary gives a set of mixed boundary conditions.

A consistent sign convention is very important and the convention applied here is the

same as in [14], Ch. 7 (pg. 422). The balance of shear forces S at the tip end considers

the inertia of the tip mass mtip and yields the right boundary condition, −S = mtipẅ(1).

∂

∂x

(
EI

L3

∂2w(x)

∂x2

)∣∣∣∣
x=1

= −mtipω
2w(1)

EI

L3
ψ′′′(1) = −mtipω

2ψ(1) (36)

With mbeam = ρAL, one can express the boundary condition as follows

ψ′′′(1) + α4

(
mtip

mbeam

)
ψ(1) = 0. (37)

The rotary e�ects of the tip taken into account by the moment balance at the end of the

beam serves as the remaining boundary condition for the problem, M =
Jtip
L

∂ẅ(x)
∂x

∣∣∣
x=1

.

(
EI

L2

∂2w(x)

∂x2

)∣∣∣∣
x=1

=
−Jtipω2

L

(
∂w(x)

∂x

)∣∣∣∣
x=1
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EI

L2
ψ′′(1) = −Jtipω

2

L
ψ′(1) (38)

where Jtip denotes the tip's moment of inertia. We therefore obtain

ψ′′(1) + α4

(
Jtip

mbeamL2

)
ψ′(1) = 0. (39)

The set of equations given by (37) and (39) form a complete set of boundary conditions

for the PDE (32), which is necessary to obtain the solution of the PDE. These boundary

conditions still depend on the modal parameter α. We substitute eq. (35) into the

remaining set of boundary conditions.

[D(α)] · (C) = 0 (40)

In order for eq. (40) to have a non-trivial solution for (C), it is necessary that |[D(α)]| =
0. The modal parameters αn are therefore the roots of the characteristic polynomial of

|[D(α)]| = 0. Looking back to eq. (32), we can determine the natural frequencies of the

cantilever.

ωn =

√
EIα4

n

ρAL4
(41)

A.4. Applying the Ritz method to the AFM cantilever

problem

As discussed in the previous section, the cantilever beam being a continuous system

can be analyzed with a �eld equation approach. The approach of the Ritz method is

to map a continuous function, such as displacement, into an N -dimensional space of

basis functions. What is more, this set of basis functions can separate the spatial and

time-dependence of the original function. The generalized coordinates are chosen to be

time-dependent only.

w(x, t) =
N∑
j=1

ψj(x)qj(t) ⇐⇒ w(x, ω) =
N∑
j=1

ψj(x)qj(ω)

It shall be noted that the frequency domain expression of time-dependent generalized

coordinates is equally valid and more useful than a derivation in the time domain in this
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particular case.1 The resulting formulation of the kinetic energy T and potential energy

V of the system reveals that through the Ritz approach, one can treat a continuous

system of distributed degrees of freedom as a discreteN -degree-of-freedom system, where

N is the number of the basis functions we chose to map the continuous variable.

T =
1

2

N∑
j=1

N∑
n=1

Mjnq̇j q̇n V =
1

2

N∑
j=1

N∑
n=1

Kjnqjqn

Here, Mjn and Kjn denote the inertia and sti�ness coe�cients, respectively. Having

said this, the equations of motion for the cantilever take the common form of

[M](q̈) + [C](q̇) + [K](q) = (Q). (42)

For a freely vibrating cantilever, the excitation on the right-hand-side of equation (42)

can be neglected.

It is essential to determine the inertia, damping and sti�ness matrix of the system.

Starting with the inertia coe�cients, one must consider everything that contributes to

the kinetic energy of the system.

Mjn =

∫ 1

0

ρALψjψndx+
∑

mψj(xm)ψn(xm) +
∑ Im

L2

(
∂ψj
∂x

∂ψn
∂x

)∣∣∣∣
x=xm

(43)

The �rst contribution to the inertia coe�cients is the cantilever's inertia. For the speci�c

case of a microprobe cantilever, the mass and rotary inertia of the tip are attached at

the end of the cantilever and accounted for in the non-integral terms.

Mjn,beam = ρbL

∫ 1

0

h(x)ψjψndx+mtip ψj(1)ψn(1) +
Itip
L2

(
∂ψj
∂x

∂ψn
∂x

)∣∣∣∣
x=1

(44)

As mentioned in section 2.1, the e�ects of the �uid add a virtual mass to the cantilever,

which is describes by the real part of the hydrodynamic force. The inertial e�ects of the

�uid are then given by

Mjn,�uid =
π

4
ρf b

2LΓr(ω)

∫ 1

0

ψjψndx. (45)

The resulting inertial coe�cients are the sum of the di�erent contributions, Mjn =

Mjn,beam+Mjn,�uid. If material damping is neglected, the only form of dissipation stems

from the �uid damping which can be expressed with the hydrodynamic force, and thus

1The Fourier transform can be used to bring time domain quantities into the frequency domain,

X(ω) =
∫∞
−∞ Xe

iωtdt.
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Cjn = Cjn,�uid =
π

4
ρf b

2LΓi(ω)

∫ 1

0

ψjψndx. (46)

Finally, the assessment of the sti�ness of the beam is very comprehensive as no additional

springs are attached to the cantilever. The sti�ness coe�cients of the cantilever are

Kjn =
Eb

12L3

∫ 1

0

h(x)3
∂2ψj
∂x2

∂2ψn
∂x2

dx. (47)

To abbreviate these expressions, we de�ne the following coe�cients

mjn =

∫ 1

0

ψjψndx kjn =

∫ 1

0

∂2ψj
∂x2

∂2ψn
∂x2

dx (48)

hem,jn =
1

mjn

∫ 1

0

h(x)ψjψndx h3ek,jn =
1

kjn

∫ 1

0

h(x)3
∂2ψj
∂x2

∂2ψn
∂x2

dx (49)

Therefore, the complete set of inertial, damping and sti�ness coe�cients in the EOM of

the Ritz method is

Mjn = ρbL(hem,jnmjn) +
[π
4
ρfb

2LΓr(ω)
]
mjn +mtipψn(1)

2 +
Itip
L2

(ψ′n(1))
2

(50)

Cjn =
[π
4
ρfωb

2LΓi(ω)
]
mjn (51)

Kjn =
Eb

12L3
(h3ek,jnkjn) (52)

Acquiring the eigenmodes and eigenfrequencies entails a solution of the generalized

eigenvalue problem.

[
[K]− ω2[M]

]
(φ) = 0 (53)

A Ritz series with N terms has N natural frequencies ωn and N orthogonal modes

(φn). By scaling the computed modes to have a unit modal mass, the mode shapes of

the vibrating cantilever are the normalized mode functions

(Φj) =
(φj)

[(φj)T[M](φj)]
1/2
. (54)

This leads to the �rst orthogonality property
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[
(Φj)

T[M](Φj)
]
= δjn (55)

and the second orthogonality property allows the computation of the natural frequencies

of the cantilever

[
(Φj)

T[K](Φj)
]
= ω2

n δjn. (56)

A.5. Derivation of the modi�ed Sader method

The mode shapes and natural frequencies calculated with the Ritz method are approx-

imate solutions for a continuous structure which cannot be approached with analytical

methods. However, if the basis functions of the Ritz series were an exact solution to

the problem, a single term Ritz series would be an exact model for the contribution of

a single mode to a structure's response. Thus, we take a single term Ritz series N = 1,

for which we employ the nth mode of our beam, to derive the method of Sader. The

equation of motion of our problem then boils down to

Mnnq̈n + Cnnq̇n +Knnqn = 0, (57)

with the coe�cients given as follows

Mnn = ρbL(hem,nmnn) +
[π
4
ρfb

2LΓr(ω)
]
mnn +mtipψn(1)

2 +
Itip
L2

(ψ′n(1))
2

(58)

Cnn =
[π
4
ρfωb

2LΓi(ω)
]
mnn (59)

Knn =
Eb

12L3
(h3ek,nknn). (60)

The expression for the static sti�ness of a non-uniform cantilever1 from the derivation

in section A.2 can be used at this point and equation (60) can be written as

Knn =
ks
3

(
hek,n
hes

)3

knn. (61)

Subsequently, we divide the equation of motion of the single term Ritz approach by

Mnn. The terms multiplying q̇n and qn are ωn/Q and ω2
n, respectively. Thus, we obtain

1Spring constant of the non-uniform cantilever, ks =
Ebh3

es

4L3
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ks
3

(
hek,n
hes

)3

knn = ω0Q
[π
4
ρfωb

2LΓi

]
mnn. (62)

It shall be noted that for an under-damped system with Q >> 1, which is the case for

a cantilever vibrating in air, one can approximate the natural frequency of the damped

cantilever to being equal to the undamped case. Therefore, rearranging equation (62)

yields an expression for the static sti�ness as a function of the natural frequency and

the quality factor of the cantilever.

ks,Sader =
3π

4
ρfb

2LΓi

(
hes
hek,n

)3
mnn

knn
Qω2

n (63)

A.6. Derivation of the modi�ed Thermal Tune Method

For a freely vibrating microcantilever, mean-square thermal noise oscillations are related

to the amplitude of vibration and the spring constant,

1

2
kBT =

1

2

〈∫ 1

0

EI(x)

L3

(
∂2w

∂x2

)2

dx

〉
(64)

The right-hand-side of equation (64) is the potential energy stored in the deformation of

a cantilever beam, where w denotes the transverse de�ection of the cantilever. Similar

to the approach for the Sader method above, a single term basis functions is used to

depict the cantilever's vibratory deformation, w(x, t) = ψn(x)q(t).

kBT =
Eb

12L3

∫ 1

0

h(x)3
(
∂2ψn
∂x2

)2

dx 〈q(t)2〉 (65)

Using the expression for hek,n in equation (49) and the spring constant of a non-uniform

cantilever in equation (28),



APPENDIX A. APPENDICES 37

kBT =
Ebh3ek,n
12L3

knn 〈q(t)2〉

=
ks
3

(
hek,n
hes

)3

knn〈q(t)2〉

=
ks
3

(
hek,n
hes

)3

knn
〈ψ(1)2q(t)2〉

ψ(1)2

=
ks
3

(
hek,n
hes

)3

knn
〈d2c〉
ψ(1)2

=
ks
3

(
hek,n
hes

)3

knnχ
2
n

〈(d∗c)2〉
ψ(1)2

.

In the derivation above, the factor χ is used to account for the di�erence between the

de�ection shape of a freely vibrating cantilever to a statically loaded cantilever. A

thorough discussion of this can be found in [8]. Following the derivation above, one

obtains an expression for the static sti�ness of a non-uniform cantilever that contains

the mean-square vibratory de�ections of the cantilever's end and the temperature at

which the cantilever vibrates.

ks,Thermal =
3kBT

〈(d∗c)2〉

(
hes
hek,n

)3(
ψ′n(1)

2

knn (W ′
end(1))

2

)
(66)


