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ABSTRACT

The Algorithm of Mode Isolation (AMI) is an iterative procedure for identifying the

number of modes contributing to a frequency response function (FRF) concurrently with

identifying the complex eigenvalues and eigenvectors of those modes. The latest modifica-

tions obtain these modal properties solely by using linear least squares fits of the FRF data

to canonical forms. The algorithmic operations are explained in a detailed sequence of steps

that are illustrated by some sample data. The computational efficiency of AMI relative

to other modal identification algorithms that fit response data to multi-degree-of-freedom

model equations is discussed.
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I. INTRODUCTION

Algorithms for experimental modal analysis of linear dynamic systems can be categorized

as to whether they use frequency or time domain data. Another categorization addresses the

analytical representation of a response to which the measured data is fit. Single-degree-of-

freedom (SDOF) techniques consider modes to act independently, whereas multiple-degree-

of-freedom (MDOF) techniques allow for the modal contributions to overlap. A third de-

scriptor pertains to the number of locations for excitation and response measurement. Single

input-single output (SISO) uses a single pair, while multiple input-single output (MISO) uses

multiple excitations and measures response at one location. If the system is time-invariant,

so that the principle of reciprocity applies, then single input-multiple output (SIMO) is

equivalent to MISO. Multiple input-multiple output (MIMO) uses the data obtained from a

multitude of excitations and response measurements. The texts by Maia et al1 and Ewins2

provide a good background for these concepts.

Modal properties to be identified are the natural frequencies and modal damping ratios,

which are system properties that are independent of the selection of points at which the data

is measured. Mode vectors also require determination, but their values are dependent on the

locations of the measurement points. Underlying this need is the requirement to identify the

number of modes active in a frequency band, or equivalently, the system order associated with

a time domain response. MDOF algorithms, which seem to be most commonly employed,

make an a priori guess for the number of modes. One approach for verifying the correctness

of that guess is to examine a metric that indicates how well a reconstruction of the response

using the identified modal properties fits the measured response. However, because the
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frequency response functions (FRFs) corresponding to a different excitation feature different

weightings of the modal parameters, it does not follow that parameters giving a good metric

for one set of FRFs are suitable for other excitations. An alternative for verifying the

system order displays in stabilization charts the natural frequencies identified from a range

of guesses, then discards modes that are not consistently obtained.3 This practice often

requires considerable expertise of the analyst, and increases the computational effort. Also,

it is best to over-estimate the number of modes, but doing so raises the computational effort;

it can also lead to false estimations and split modes, as was shown by Doebling, Alvin and

Peterson.4

Even if the number of participatory modes were known, the presence of relatively large

damping can give rise to identification difficulties for several reasons. Some algorithms im-

plicitly assume that dissipation is viscous. Furthermore, if a system has a wide range of

modal damping ratios, the more highly damped modes in any transient temporal responses

are rapidly attenuated, thereby magnifying the contribution of noise to those modes. For

frequency domain data, high damping lowers the resonant peak of a frequency response func-

tion (FRF). Both serve to make it more difficult to distinguish the response from ambient

noise, especially for in situ applications such as health monitoring applications. A further

complication of large damping arises when natural frequencies are close, which is a common

situation for high frequency modes in complex systems. In such situations, the modal band-

width of adjacent resonant peaks might exceed the natural frequency difference, leading to

merger of the resonant peaks into one broader peak, which is known as mode coupling. This

can make it difficult to distinguish the individual modes.
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For any identification technique proper selection of the drive point(s) is a primary factor

affecting the quality of the identification. If the drive point mobility in a mode is small,

that mode will participate little in the measured response, making it difficult to extract the

mode. This situation is exacerbated by the presence of substantial noise, where one would

expect that it is necessary for the response to stand out from the ambient noise.

Previous papers have suggested that the Algorithm of Mode Isolation (AMI) has the po-

tential to address these difficult issues. It recognizes that several modes might simultaneously

contribute to an FRF at any frequency, but does so in an iterative manner, in the course

of which one obtains the number of modes active in any frequency interval. The algorithm

was initially described by Drexel and Ginsberg5 for classical, undamped, modal analysis,

although the basic concept was previously mentioned by Joh and Lee6. It then was extended

to modal analysis in the state space in order to account for arbitrary damping (Drexel and

Ginsberg,7 Drexel, Ginsberg, and Zaki8). In order to improve the ability to identify modes

that are poorly excited Zaki10 modified AMI by deferring identification of the normal mode

coefficients. In the modified approach the original AMI algorithm is solely used to extract

the eigenvalues. A global linear least-squares procedure using the identified eigenvalues then

leads to mass normalized mode vectors.

The heart of the AMI algorithm is to fit iteratively an FRF to the canonical form of a

single mode. The aforementioned investigations used a nonlinear least squares routine to

fit the data, which required significant computations and good starting values. Even then,

convergence could be slow in some situations, and the results less accurate than desired.

Ginsberg et al11 presented a general SDOF fitting procedure, in which linear least-squares is
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used to match a resonant peak in an FRF to the FRF of a complex mode. That technique

is not iterative, and it yields an exact match for the analytical FRF of an SDOF system.

Implementation of this fitting procedure in AMI substantially increases the reliability and

computational efficiency of the individual iterative steps.

The complete elimination of non-linear least squares routines within AMI, coupled with

separate identification of eigenvalues and complex mode vectors, are significant alterations.

The present paper provides a detailed description of the latest version. Part II assesses

its performance in comparison to analytical results, as well as relative to a popular modal

identification algorithm.

II. THE STANDARD MODE ISOLATION ALGORITHM

The data to be input to AMI are the FRFs HjP (ωm) , which are defined as the complex

amplitudes of a set of generalized displacements qj when generalized force QP has a unit

amplitude over a discrete set of frequencies ωm,

Qj = Re [δjP exp (iωmt)] =⇒ qj = Re [HjP (ωm) exp (iωmt)] (1)

By reciprocity, HjP (ωm) = HPj (ωm) . Hence, regardless of whether measurements are taken

according to a SIMO or MISO protocol, the input data for AMI can be considered to be a

rectangular array of FRF values, in which column j holds the FRF values over a discrete set

of frequencies ωm associated with displacement j and specified drive point P .

An FRF may be expressed as a finite sum of contributions of complex modes associated

with a state-space description. If N is the number of degrees of freedom, then there are 2N

eigensolutions, consisting of an eigenvalue λk and eigenvector {Φk} that satisfy the symmetric
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eigenvalue problem, 
 [0] [K]

[K] [C]

− λk

[K] [0]

[0] − [M ]


 {Φk} = {0} (2)

The eigenvectors {Φk} are normalized according to

{Φk}T
[K] [0]

[0] − [M ]

 {Φk} = 1 (3)

It is assumed that all eigenvalues occur as complex conjugate pairs. This corresponds

to modes that are underdamped, meaning that their free response is oscillatory within an

exponentially decaying window. By analogy with an SDOF system, an undamped natural

frequency Ωk and modal damping ratio ζk can be extracted from an eigenvalue according to

Ωk = |λk| , ζk = −Re (λk) / |λk| (4)

If all eigenvalues are complex conjugates, the system may be considered to possess N under-

damped modes, whose contribution to any response may be represented by evaluating the

role of the N eigensolutions whose eigenvalues have positive imaginary parts, then using the

conjugate property to account for the other N eigensolutions. It is convenient in that case to

sequence the eigenvalues such that those having positive imaginary parts come first followed

by the conjugate values in the matching sequence. When this is done, each eigenvector may

be expressed in terms of one of a set of N column vectors {Uk} whose N elements represent

the (complex) modal proportions of the generalized coordinates, according to

λk+N = λ∗k =⇒ {Φk} =


{Uk}

λk {Uk}

 , {Φk+N} = {Φk}∗ (5)
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As a result of the conjugate properties of the complex modes, an FRF value may be ex-

pressed12 as a superposition of modal contributions according to

HjP (ω) =
NX
k=1

·
AjP,k

iω − λk
+

A∗jP,k
iω − λ∗k

¸
(6)

where ( )∗ denotes a complex conjugate, and AjP,k are residue factors that depend solely on

the eigensolution for mode k,

AjP,k = λkUjkUPk (7)

The foregoing is the analytical perspective, whereas in experimental modal analysis one

does not know the number of degrees of freedom. Henceforth, N0 will denote the number

of measurement points for which FRFs are available, and N will denote the number of

modes whose natural frequency falls in the frequency interval covered by the FRF data. The

determination of N is a key aspect of any modal identification.

AMI begins by sequentially processing each of the N0 FRF data sets. Two processes

are applied to this data, both of which use current estimates of the eigenvalues and residue

factors to subtract estimated modal contributions from the original data. The term “subtrac-

tion residual”, denoted as Yj,k (ω) , refers to the data obtained by subtracting from HjP (ω)

estimated contributions for modes 1 to k, where the modes are numbered in the sequence in

which they are detected. This data may be evaluated incrementally, such that

Yj,0 (ωm) = HjP (ωm)

Yj,k (ωm) = Yj,(k−1) (ωm)−
·

AjP,k

iωm − λk
+

A∗jP,k
iωm − λ∗k

¸ (8)

In the Subtraction Phase modes are identified one at a time and their contribution to the

FRF is subtracted until all significant modes have been removed. These operations may be

summarized by a sequence of algorithmic steps:
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S.1 Pick a generalized coordinate j and initialize the subtraction residual Yj,0 (ωm) to be

the FRF values for this coordinate at a discrete set of frequencies. Initialize the mode

number as k = 0.

S.2 Identify the frequency range of the most dominant mode in the subtraction residual by

searching for max (Yj,k (ωm)) . Use an SDOF fit of the data in this frequency range to

estimate the most dominant mode’s properties. (This step now uses the linear least-

squares procedure presented by Ginsberg et al11 and summarized in a later section.)

Increment k by one, and assign the identified modal parameters as λk and AjP,k.

S.3 Form subtraction residual data Yj,k (ωm) according to eq. (8).

S.4 Decide whether Yj,k (ωm) contains the contribution of another mode. If so, return

to Step S.2. If Yj,k (ωm) consists solely of noise, then set the initial estimate for the

number of modes to be N = k, and proceed to the Isolation Phase.

The Isolation Phase has the primary purpose of accounting for the fact that more than

one mode may contribute to an FRF, even in the frequency range of a resonance. It uses

current estimates for the modal parameters to isolate the contribution of a specific mode.

This requires forming an “isolation residual”, denoted Xj,k (ωm) , in which current estimated

contributions of all modes other than number k are subtracted from HjP (ωm) according to

Xj,k (ωm) = HjP (ωm)−
NX
n=1
n6=k

·
AjP,n

iωm − λn
+

A∗jP,n
iωm − λ∗n

¸
(9)

The estimated modal properties required to begin the isolation process are those at the end

of the Subtraction Phase, and the sequence in which the modes are isolated matches that in
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which the modes were identified in the Subtraction Phase. The steps required to carry out

these operations are:

I.1 Initialize the mode number k = 0.

I.2 Increment k by one, and form isolation residual data Xj,k (ωm) according to eq. (9).

For this, use the latest values for λk and AjP,k.

I.3 Apply the linear least-squares SDOF fit toXj,k (ωm) in order to obtain refined estimates

of λk and AjP,k. Retain the previous values for convergence tests.

I.4 If k < N, return to Step I.2. If k = N, compare the new values and old values of all

λk and AjP,k. If these values have not converged, return to Step I.1. (Iterating until

the real and imaginary parts of λk and AjP,k change by less than 0.01% yields good

results. For modes whose natural frequency differs from those of adjacent modes by

more than the modal bandwidth, no more than five iterations are typically required.)

I.5 Use the converged set of values all λk and AjP,k to form subtraction residual Yj,N (ωm) ,

which accounts for all modes identified thus far.

I.6 Decide whether Yj,N (ωm) contains the contribution of a (previously unidentified) mode.

If not, cease processing of the FRF for the jth generalized coordinate, and return to

Step S.1 to process another set of FRF data.

I.7 This step is reached if there is evidence of an additional mode in Yj,N (ωm). Apply the

linear least squares SDOF fit to this data in order to obtain initial estimates of λN+1

and AjP,(N+1).
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I.8 Increment N by one, then set k = N − 1 and return to Step I.1.

All of the preceding operations are straightforward, except for Steps S.4 and I.6, which

require a decision as to whether a residual FRF contains the contribution of a mode. If

all of the modal contributions have been subtracted, the residual FRF should appear to be

incoherent. The present procedure requires that the user visually search plots of the data to

determine if there is some degree of coherence, e.g. several points form a noticeable peak in

a Bode magnitude plot and a regular arc in a Nyquist plot. Identification of a quantitative

measure on which to base this decision is a current area of investigation.

A useful perspective for the isolation stage is obtained by recognizing that because the

isolation residual is formed by subtracting the current estimates for the contribution of

known modes other than the one in focus, what remains consists of several parts: the actual

contribution of the current mode, noise and measurement error, and errors associated with

using parameters for the other modes that are not exact. Any of the latter that standout

above the noise will influence successive isolation steps until they are driven below the noise

level. A corollary is that the noise floor defines the weakest modes that can be identified.

As an illustration of the Subtraction Phase, the latter stages of the processing of one of

the FRFs described in Part II shall be followed here. The upper part of Figure 1 shows the

Bode magnitude plot of a residual FRF |H11 (ω)| after five modes have been identified and

their contributions subtracted, that is, Step S.4 with k = 5. The lower part of Figure 1 is

a Nyquist plot of the same data. The irregularity of the data is a consequence of the white

noise that was added to the data. Eleven modes have their natural frequency in the band

covered by this figure, and five have been subtracted. The effect of the noise is to mask

11



some of the six remaining modes. The Bode plot displays three peaks, but the Nyquist plot

shows only two loops. (Each mode can be expected to produce a loop in a Nyquist plot.2)

The presence of peaks in the Bode plot and coherent loops in the Nyquist plot indicates

that the Subtraction Phase should continue, so the procedure passes to Step S.2 with k = 6.

The peak below 100 rad/s is the highest. The linear least squares routine is used to fit the

data in the vicinity of this peak, thereby identifying the sixth eigenvalue and residue. The

subtraction residual is computed in Step S.3, and plotting of this data in accord with Step

S.4 leads to Figure 2. The low frequency peak has been eliminated, and there is only one

loop in the Nyquist plot. Because there is still evidence of the presence of a mode in the FRF

data, the procedure returns to Step S.2 with k = 7. The highest peak in the plot of |H11 (ω)|

versus ω now lies in the vicinity of 2000 rad/s, so the data in that region is used for the

parameter identification, which yields the seventh eigenvalue/residue estimate. Computing

the subtraction residual FRF in Step S.3 leads to the plots in Figure 3, which are examined

in Step S.4. Although the Bode plot shows evidence of a small peak in the vicinity of 3000

rad/s, the Nyquist plot shows no evidence of a regular arc. This indicates that the data

is incoherent, so even if the peak actually corresponds to a mode, the identification of its

properties would be unreliable. Consequently, the search is discontinued, and processing

proceeds to the Isolation Phase with N = 7.

Under ideal circumstances, processing the FRF for the jth generalized coordinate as

described in the preceding would give an estimates of λk andAjP,k for k = 1, ..., N. Subjecting

each displacement data set to the same processing then would lead to N0 estimates of each

the λk values, and a single estimate of each AjP,k coefficient for j = 1, ..., N0. In such ideal
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circumstances, each set of λk for fixed k would be averaged. However, as illustrated by

Figures 1-3, weakly excited modes or modes whose amplitude is small at the measurement

location actually might not be identified in a specific FRF data set. If such is the case, the

missing values are merely omitted when average eigenvalues are computed.

There also might be noticeable discrepancies between corresponding eigenvalues obtained

from different FRF sets. This leads to the question of whether the individual estimates should

be merged by averaging, or whether differences of estimates are sufficiently large to consider

the eigenvalues to be distinct. One criterion for considering eigenvalue estimates obtained

from different FRFs to represent different modes is that either their real or imaginary parts

differ by more than the worst error typically encountered in AMI, which presently is es-

timated at 25% for the real part and 5% for the imaginary part. If this condition is not

met, then another criterion that compares the difference of adjacent natural frequencies,

|λk+1| − |λk| , to the modal bandwidths is checked. For a single mode, the bandwidth is

−2Re (λk)12. Subtracting from the frequency difference the half-bandwidth for each mode

yields the frequency interval between the adjacent half-power points belonging to two peaks.

This is illustrated in Figure 4, where an FRF H (ω) is synthesized from the contributions

H (ω, λ1) and H (ω, λ2) of two neighboring modes having equal residues. In Figure 4(a)

|λ2| − |λ1| is greater than the sum of the half-bandwidths, and the peaks of the FRF are

quite distinct. In Figure 4(b) |λ2|− |λ1| is less than the sum of the half-bandwidths, which

means that the bandwidths overlap. The peak FRF is a merger of the individual peaks,

with a flattened region that shows a dimple. The sum of the half-bandwidths is the average

bandwidth. Modal overlap corresponds to an average bandwidth that substantially exceeds
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the frequency difference. Experience has shown that the linear least squares identification

algorithm described later usually will distinguish between eigenvalues in a single FRF if the

difference of adjacent undamped natural frequencies significantly exceeds 40% of the average

bandwidth. Based on this observed behavior, eigenvalues obtained from different FRFs are

considered to be distinct if they fit a similar specification, specifically,

|λk+1|− |λk| > 0.4 [−Re (λk)−Re (λk+1)] (10)

Conversely, adjacent eigenvalues are averaged if they do not meet this specification. It should

be noted that incorrectly merging modes having distinct eigenvalues results in their being

treated as two (or more) modes that share the same eigenvalue. Full identification of such

modes requires a MIMO algorithm, see Maia et al .1

III. SINGLE MODE PARAMETER IDENTIFICATION

Both the Subtraction and Isolation Phases require that one identify the properties of a

single mode that best fit the FRF data in the vicinity of a resonance peak. Ginsberg et al11

derived a linear least squares procedure for this purpose. The first step is to combine the

two terms associated with a single mode in eq. (6). This gives

HjP (ω) = 2
[iω −Re (λk)] Re (AjP,k)− Im (λk) Im (AjP,k)

|λk|2 − ω2 − 2iωRe (λk)
(11)

Clearing the denominator in eq. (11) and breaking the result into real and imaginary parts

then leads to

Re [HjP (ω)]
¡|λk|2 − ω2

¢
+ 2ω Im [HjP (ω)] Re (λk)

= −2 [Re (λk) Re (AjP,k) + Im (λk) Im (AjP,k)]

(12)
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Im [HjP (ω)]
¡|λk|2 − ω2

¢− 2ωRe [HjP (ω)] Re (λk)

= 2ωRe (AjP,k)

(13)

Both equations are linear in four variables: |λk|2 , Re (λk) , Re (AjP,k) , and [Re (λk)Re (AjP,k)

+ Im (λk) Im (Ajk)]. In principle, evaluating this pair of real equations at two arbitrary fre-

quencies would yield four linear simultaneous equations that could be solved for the un-

knowns, from which the values of λk and AjP,k could be extracted. In practice, evaluation

of eqs. (12) and (13) at two frequencies is not sufficient for a variety of reasons. Hence,

the strategy is to evaluate the equations at a multitude of frequencies, from which the four

combination variables are determined by a linear least-squares procedure.

Not all of the FRF data is used to obtain the least squares solution. Selecting values

increasingly far from the vicinity of a resonance enhances the contribution of other modes

to the FRF, thereby defeating the notion that a single mode can be fit. Also, for additivie

white-noise the best signal-to-noise ratios are at the resonance peaks. However, there are

not likely to be many FRF values at a resonance unless the frequency increment is very

fine. Furthermore, raising the number of values to be matched by using FRF values away

from a resonance affords a greater opportunity for distributing the error. This dilemma

was explored by Ginsberg et al11 through a Monte Carlo study. They found that using all

FRF points above the quarter-power points gave the best results for uniformly distributed

random noise at several levels. This criterion is met by selecting for the least-squares fit only

those values of HjP (ω) that satisfy |HjP (ω)| ≥ δmax(|HjP (ω)|), where δ = 0.5 yields the

quarter-power points.
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IV. IMPROVEMENT FOR LOW MODAL MOBILITY

In the original conception of AMI the residue factors AjP,k obtained from a set of FRF

data were used to calculate normal modes according to

UPk =

µ
APP,k

λk

¶1/2
Ujk =

µ
AjP,k

λkUPk

¶
, j 6= P

(14)

A problematic aspect of the preceding arises when a specific coefficient UJK (the Jth element

of the Kth mode vector) is very small. In that case the signal-to-noise ratio for HJP (ω)

will be poor when ω ≈ ΩK , so there will be no evidence of the Kth mode’s contribution

when the FRF data set for qJ is processed, resulting in a missing value of AJP,K and failure

to estimate λK from that FRF. Two possibilities exist. The simpler situation corresponds

to J 6= P, that is, the near-nodal measurement point is not the location where the system

was driven. If the transfer functions for other displacements in the vicinity of ω = ΩK have

reasonable signal-to-noise ratios, then processing the HjP (ω) data sets for j 6= J will lead to

a reasonable estimate for λK and AjP,K. As explained previously, averaging the estimates of

λK will ignore the missing value. Also, the missing residue factor AJP,K may be considered

to be zero, so the normal mode coefficients may be computed according to eqs. (14).

The situation is much worse if the near-nodal measurement point is the location where

the system was excited, J = P . If one were so unfortunate as to drive the system at a true

modal node, so that UPK = 0, the Kth mode would not be excited. In that case, identifying

mode K would require redoing the measurements with a different drive point. The more

likely circumstance is that UPK is very small, but non-zero. In that case smallness of the

first denominator in eq. (6) when ωm ≈ ΩK might lead to HjP (ω) values for j 6= P that
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have good signal-to-noise ratios in the vicinity of ωK . This would make it possible for AMI to

estimate λK and AjP,K for j 6= P from those other displacements. However, failure to identify

mode K from the data for displacement P would leave the coefficient APP,K undetermined.

It therefore would not be possible to identify the normalized mode coefficients according to

eqs. (14).

In the last case, one could readily extract an estimate of a relative mode shape according

to

UnK/UjK ≡ AnP,K/AjP,K (15)

Here AjP,K is a residue factor that has been identified as being non-zero, and AnP,k would

be considered to be zero for any missing values. However, a simple change in the strategy

for using AMI ensures that if an estimate of λK is obtained from any FRF data set, then

an estimate for all corresponding normal mode coefficients will be obtained. Some existing

algorithms in their later stages use known eigenvalues to estimate eigenvectors through a

global fit of all FRF data, see Richardson and Formenti9, for example. This notion is

eminently suitable for the present situation. If the eigenvalues are taken to be known,

then the only unknowns in eq. (6) are the AjP,k coefficients, which occur there linearly.

Many values of HjP (ω) are available, corresponding to numerous frequencies and each of the

displacements. Therefore, the right side of Eq. (6) can be matched to the measured values

of HjP (ω) in a linear least-squares procedure, which is relatively efficient, and not iterative.

The result is that a value is obtained for every AjP,k coefficient for which a value of λk has

been estimated, and consequently that an estimate for each mode vector will be obtained.

To implement the procedure in the current context, each FRF is broken into real and
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imaginary parts, which leads to an error function for each part. The squared errors to be

minimized are the inner products of the total error vector formed from the individual errors

at each frequency,

R
(1)
j =

MX
m=1

"
Re (HjP (ωm))−Re

NX
k=1

µ
AjP,k

iωm − λn
+

A∗jP,k
iωm − λ∗k

¶#2

R
(2)
j =

MX
m=1

"
Im (HjP (ωm))− Im

NX
k=1

µ
AjP,k

iωm − λk
+

A∗jP,k
iωm − λ∗k

¶#2 (16)

As was done for the SDOF identification of the eigenvalues, the frequencies ωm are selected

to be close to each identified natural frequency, so that the HjP (ωm) used for the fit have the

best signal-to-noise ratio. The presence of the residue factors and their complex conjugates

in the preceding is most readily handled by considering the real and imaginary parts of each

AjP,k to be distinct unknowns. Applying the linear least squares procedure to R
(1)
j and R

(2)
j

individually for a specific j yields both parts of AjP,k for k = 1, ..., N. Hence, a full evaluation

of the normal modes entails repeating the procedure for each FRF data set, j = 1, ..., N0.

The normal mode coefficients are then calculated according to eqs. (14).

V. DISCUSSION

The algorithm of mode isolation (AMI) is an iterative procedure for extracting modal

properties from frequency response functions (FRFs). Each FRF is fit to the analytical form,

which consist of a sequence of poles that define the natural frequencies and modal damping

ratios, and residue factors, from which the mode vectors are extracted. Each step of the two

iterative phases focuses on a single mode’s contribution.

The latest version of AMI uses linear least-squares routines to identify that mode’s eigen-

value and residue factors. Separate identifications are performed on each FRF, leading to
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multiple estimates. The eigenvalues obtained from each FRF are averaged using a specified

merging criterion. Instead of using the residue factors obtained by processing the individual

FRFs, the third phase of the procedure uses the average eigenvalues as inputs to a linear

least-squares identification that yields a global estimate of all residue factors. These modi-

fications improve the accuracy, as well as the computational efficiency of the identification,

because linear least-squares is a not iterative, and it does not depend on having a good initial

guess for the desired parameters.

The computational efficiency of AMI also is enhanced by the fact that only a subset

of the FRF data is processed. The frequency increment for an FRF must be a fraction

of the smallest modal, in order to recognize the existence of all modes. Consequently, the

number of frequency samples is inherently very large in comparison to the number of modes

to be identified. MDOF identification algorithms in current use estimate the parameters

by fitting all of the response data to the modal representation. As a result, the associated

computational effort is scaled by the size of the data set. In contrast, the effort entailed in

AMI’s identification processes is scaled by the relatively small number of FRF values that

reside close to resonance peaks. In fact, the bulk of operations for AMI are devoted to

forming the subtraction and isolation residuals.

Another aspect of the question of efficiency revolves around the need to identify as part

of the overall process the number of modes whose natural frequency resides in the frequency

interval of interest. Other MDOF techniques begin with an a priori guess for the number of

modes, so that multiple such guesses are usually tried in order to identify which modes are

computational artifacts. In AMI, the number of modes is obtained directly as part of the
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overall procedure. As a result, the FRF data is processed only once.
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List of Figures

1 Typical subtraction residual after removal of the first five modes.

2 Typical subtraction residual after removal of the first six modes.

3 Typical subtraction residual after removal of the first seven modes.

4 Frequency response function formed by summing the FRFs of two modes

having close natural frequencies; (a) A1P,1 = A1P,2 = 1, λ1 = −0.01 + 0.98i,

λ2 = −0.01 + 1.02i, (b) A1P,1 = A1P,2 = 1, λ2 = −0.01 + 0.9975i, λ2 =

−0.01 + 1.0025i. 
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Figure 1: Typical subtraction residual after removal of the first five modes.
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Figure 2: Typical subtraction residual after removal of the first six modes.
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Figure 3: Typical subtraction residual after removal of the first seven modes.
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Figure 4: Frequency response function formed by summing the FRFs of two modes having

close natural frequencies; (a) A1P,1 = A1P,2 = 1, λ1 = −0.01+ 0.98i, λ2 = −0.01+ 1.02i, (b)

A1P,1 = A1P,2 = 1, λ2 = −0.01 + 0.9975i, λ2 = −0.01 + 1.0025i.




