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Abstract

Large damping levels, low signal to noise ratio, and
low frequency resolution can cause difficulties for current
SDOF SISO algorithms that identify natural frequency,
modal damping ratio, and the residue associated with
each eigenvalue. This paper offers an alternative tech-
nique that through a change of variables leads to a set of
linear equations for the complex eigenvalue and residue.
The approach resembles the least-squares procedure de-
scribed by Phillips and Allemang [Proc. 14th Interna-
tional Modal Analysis Conference, 1996], but it avoids
the approximation that the complex conjugate residue is
unimportant. For noise-free data, the procedure yields
the exact parameters from FRF values at any two fre-
quencies. Noisy data is readily addressed by implement-
ing linear least-squares. The paper uses synthetic FRF
data contaminated by 20% white-noise to assess the per-
formance via Monte Carlo simulation. Mean values and
standard deviations of the eigenvalue and residue are
computed for several sampling rates. An effective crite-
rion for selecting data points to be between the quarter-
power points of a resonance peak is demonstrated to be
a good criterion in each case.

NOMENCLATURE

GjP (ω) Displacement transfer function
A Modal residue
λ Modal eigenvalue
Ar, Ai Real and imaginary parts of A
α, β Real and imaginary parts of λ
Ω Undamped natural frequency
δ Cutoff factor for data points, see eq. (18)
N Number of data points for least squares fit
E [ ] Mean value of a quantity
σ [ ] Standard deviation of a quantity
ω Drive frequency
∆ω Frequency sampling interval

1 INTRODUCTION

Algorithms for experimental modal analysis are catego-
rized as to whether they are SDOF (single-degree-of-
fredom) or MDOF (multi-degree-of-fredom) , which refers
to whether identification of the modal properties allows
for the contribution to the data being processed of sev-
eral modes. For some systems, especially those that are
very lightly damped, SDOF techniques often suffice, es-
pecially if one restricts their attention to the lower fre-
quency modes. SDOF techniques also can be used to
estimate modal properties as a check for an MDOF iden-
tification. Another use for SDOF identification is as a
component of an MDOF algorithm. Such is the case for
the iterative AMI (Algorithm of Mode Isolation) proce-
dure, which synthesizes the modal picture as sequence of
SDOF steps.

There are a multitude of SDOF algorithms; Ewins [1]
and Maia et al [2] provide extensive surveys, and Alle-
mang [3] gives a concise review of the more common ones.
All techniques are inherently restricted to working with
frequency domain data. They also are inherently approx-
imate, because they ignore the presence of other modes.
However, they contain other approximations, depending
on the characteristics of the complex frequency response
(FRF) on which they are based. For example, one can
identify the natural frequency as the frequency at which
the FRF has its maximum magnitude, the frequency at
which the real part of the FRF is zero, the frequency
at which points on a Nyquist plot of the FRF have their
maximum spacing, or the frequency at which the distance
from a point on a Nyquist plot to the midpoint between
the high and low frequency limits is a maximum .

Even if one considers analytical data uncontaminated by
noise, results obtained by different SDOF techniques will
not be the same. A primary reason for discrepancies is the
usage of different models. The earlier formulations, such
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as Peak Amplitude, Maximum Quadrature, and Maxi-
mum Frequency Spacing, were founded on a real modal
analysis incorporating modal damping. Later develop-
ments were founded on complex modal analysis, which is
exact for arbitrary viscous damping. Furthermore, some
MDOF versions using either type of modal description
are adapted to work with structural damping. An addi-
tional cause for discrepancy, although one that is readily
rectified, is semantic in nature, stemming from the fact
that the meaning of natural frequency is unambiguous
only for proportionally damped systems. The fineness of
the frequency increment also affects the result obtained
by some techniques. For example, in the Maximum Fre-
quency Spacing method the frequency increment deter-
mines precision to which the maximum spacing between
adjacent points may be resolved. The difference between
modal parameter estimates obtained from the various
techniques are generally insignificant for low-noise data
obtained from lightly damped systems. However, some
of the available SDOF techniques are more robust than
others, that is, they tend to behave better when applied
to FRF data that has significant levels of noise.

This paper offers an alternative technique that through
a change of variables leads to a set of linear equations
for the complex eigenvalue and complex residue. The
approach resembles the linear least-squares procedure de-
scribed by Phillips and Allemang [3], but it avoids the ap-
proximation that the complex conjugate residue is unim-
portant. From a philosophical perspective, the SDOF
algorithm outlined in the following is akin Dobson’s ex-
tension of the inverse method [5], in that both yield exact
results if the FRF data is noise-free and other modes actu-
ally are not present. The present approach is founded on
the analytical representation of a single complex mode
and its conjugate to the FRF of a system with arbi-
trary viscous damping, while Dobson’s method is ex-
act for the case of structural damping. Unlike Dobson’s
method, only two FRF values are required to obtain ex-
act values of the complex eigenvalue and residue factor in
the ideal noise-free case, with results derived by solving
two pairs of simultaneous algebraic equations. Dobson’s
method accounts for the presence of a residual term as-
sociated with other modes, but does so by considering
the term to be constant over the frequency interval being
processed. Such an approximation is likely to be accept-
able only if the natural frequencies are well separated,
so it is not believed that the omission of such a term
from the present formulation is significant. Extension of
the method to noisy data is achieved by implementing
a linear least squares procedure using FRF values in the
frequency range where the FRF exhibits a maximum. Af-
ter the method is described, consideration is given to the
selection of frequency increment and interval for the FRF

data in a noisy environment. Because the algorithm in
the noise-free case is exact for arbitrary levels of damp-
ing, provided that the mode is underdamped, a heavy-
damping case is included for the sake of completeness.
The data for the present study is computed analytically,
to which is added white noise scaled as a fraction of the
peak FRF magnitude. The effectiveness of the procedure
for measured data obtained from a square plate is the
subject of a companion paper [6].

2 ANALYTICAL DEVELOPMENT

The starting point for the derivation is the contribution
of a single underdamped complex mode and its conjugate
to the FRF of generalized coordinate qj resulting from
unit harmonic excitation of generalized coordinate P,

GjP (ω) =
A

iω − λ
+

A∗

iω − λ
(1)

The eigenvalue λ and residue A are decomposed into their
real and imaginary parts, such that

A = Ar + iAi, λ = −α+ iβ (2)

With this, the FRF becomes

GjP (ω) = 2
(iω + α)Ar − βAi

α2 + β2 − ω2 + 2iαω
(3)

The next step is to introduce a change of variables,

u = α2 + β2 (4)

Clearing the denominator in eq. (3) and breaking the
result into real and imaginary parts then leads to

(G (ω))
¡
u− ω2

¢− 2ωα Im (G (ω)) = 2 (αAr − βAi) (5)

Im (G (ω))
¡
u− ω2

¢
+ 2ωαRe (G (ω)) = 2ωAr (6)

If this pair of real equations are evaluated at two arbitrary
frequencies, the result is four simultaneous equations for
u, α, Ar, and Ai.

Solution of eqs. (5) and (6) is expedited by the fact that
both equations are linear in u and α, and the second is
also linear in Ar. Let ω1 and ω2 denote two arbitrary
frequencies, and let Gk ≡ G (ωk) . Evaluation of eq. (6)
at both frequencies gives

[X]

½
u
α

¾
= Ar

½
2ω1
2ω2

¾
+

½
ω21 Im (G1)
ω22 Im (G2)

¾
(7)

where

[X] =

·
Im (G1) 2ω1Re (G1)
Im (G2) 2ω2Re (G2)

¸
(8)



Similarly, eq. (5) evaluated at both frequencies yields

[Y ]

½
u
α

¾
= 2 (αAr − βAi)

½
1
1

¾
+

½
ω21Re (G1)
ω22Re (G2)

¾
(9)

where

[Y ] =

·
Re (G1) −2ω1 Im (G1)
Re (G2) −2ω2 Im (G2)

¸
(10)

Elimination of u and α between eqs. (7) and (9)
leads to a pair of linear equations for αAr − βAi and
Ar. Back-substitution of these values into either of the
aforementioned equations yields u and α, which then
may be used to extract Ai from the computed value of
αAr − βAi. After both parts of the eigenvalue have been
computed, the corresponding undamped modal natural
frequency Ω and modal damping ratio ζ can be obtained
from

λ = −ζΩ+ ¡1− ζ2
¢1/2

i =⇒ Ω = u1/2, ζ =
α

u1/2
(11)

The procedure outlined thus far is suitable only if the
FRF is noise-free. Extension of the technique to a linear
least squares procedure capable of handling noisy data is
straightforward. The first step is to extend the definitions
of the matrices to include values obtained at a number of
frequencies. For brevity, define

[X] =

 Im (G1) 2ω1Re (G1)
Im (G2) 2ω2Re (G2)

...
...


[Y ] =

 Re (G1) −2ω1 Im (G1)
Re (G2) −2ω2 Im (G2)

...
...


{ω} =


ω1
ω2
...


©
ω2Re (G)

ª
=


ω21Re (G1)
ω22Re (G2)

...


©
ω2 Im (G)

ª
=


ω21 Im (G1)
ω22 Im (G2)

...



(12)

where the number of rows for each quantity is the number
of data points N used for the identification.

The extended version of eq. (7) is considered to be
an over-determined set of linear equations for u and α.
Requiring that they be satisfied in a linear least squares
sense leads to½

u
α

¾
=
h
X̂
i−1

[X]
T ©
2 {ω}Ar +

©
ω2 Im (G)

ªª
(13)

When this expression is substituted into the extended
version of eq. (5), the result is

2 [Y ]
h
X̂
i−1

[X]
T {ω}Ar

+ [Y ]
h
X̂
i−1

[X]T
©
ω2 Im (G)

ª
=
©
ω2Re (G)

ª
+ 2 (αAr − βAi) {1}

(14)

The preceding expression represents an overdeter-
mined set of linear equations for the two unknowns
2 (αAr − βAi) and Ar. To solve them in a least squares
sense, define

[Z] =

·
2 [Y ]

h
X̂
i−1

[X]T {ω} | −2 {1}
¸

(15)

which enables one to write½
Ar

αAr − βAi

¾
=

h
Ẑ
i−1 h

Ẑ
i ©©

ω2Re (G)
ª

− [Y ]
h
X̂
i−1

[X]
T ©

ω2 Im (G)
ª¾
(16)

Substitution of the value of Ar obtained from this relation
into eq. (13) yields α and u, from which β may be
obtained by returning to eq. (4). Finally, the value of
Ai is found by substituting the other parameters into the
value of αAr − βAi found from the preceding, while the
modal natural frequency and damping ratio are obtained
from eqs. (11).

3 EVALUATION

The procedure that follows will consider a specific com-
plex mode and its complex conjugate. Because only one
mode is to be considered the frequency scale and mag-
nitude of the residue will not affect the quality of the
identification, provided that the noise scales in the same
way as the residue. Therefore the undamped natural fre-
quency will be taken to be Ω = 1. Several evaluations
indicated that the phase angle of the residue also is unim-
portant, so the value A = −2 + 2.3i was held constant.
(A phase angle for the residue that is not close to either 0
or π is inconsistent with light damping. However, one of
the issues to be considered is the quality of identification
as ζ is increased to heavy damping. Also, identifying a
highly complex value of A is no easier than identifying a
value that is nearly real.) The FRF data set is obtained
by evaluating the analytical G (ω) according to eq. (1).
The values at each of a sequence of equispaced frequencies
is contaminated by white-noise scaled by the maximum
value of G (ω), specifically,

Gnoise (ωk) = G (ωk) + εmax (|G (ωk)|)×
[rnd (−1, 1) + i rnd (−1, 1)] (17)



where rnd(−1, 1) represents a random number uniformly
distributed between -1 and 1, newly generated at each
evaluation. Most computations will consider ε = 0.2,
which corresponds to a minimum signal to noise ratio of
14 dB at the peak FRF.

Because the best signal to noise ratios are obtained in
the range of the peak FRF, it is reasonable to focus
on the FRF values in that region for the identification.
There are a number of parameters affecting the quality
of the identification. For a given value of ζ and ε, the
frequency increment determines how well the peak FRF
is resolved. Three cases will be considered: ∆ω = 0.5ζΩ,
which corresponds to a fine frequency sweep in which
the sampling interval is 25% of the modal bandwidth,
∆ω = ζΩ which represents a reasonably good sampling
of the peak FRF, and ∆ω = 2ζΩ, where the sampling is
barely adequate. Once the sampling interval is set, one
needs to consider the number of points to use for the least
squares evaluation. Here one encounters a trade-off. If
many points are selected, there will be more opportunity
to average out the effect of errors. However, increasing
the number of points with the sampling interval held
fixed introduces points that are increasingly far from the
peak, and therefore have a lower signal to noise ratio.
The evaluations presented here selected all points in a
frequency band surrounding the peak FRF value. The
lower and upper frequency limits were set as the minimum
and maximum frequency, respectively, at which

|Gnoise (ωk)| ≥ δmax (|Gnoise (ωk)|) (18)

The evaluations used δ = 0.71, 0.50, and 0.35, corre-
sponding to amplitude limits that that are respectively
-3 dB, -6 dB, and -9 dB relative to the peak. For each
set of parameters, the linear least squares procedure was
carried out as a Monte Carlo simulation using 30 different
sets of random noise.

Figure 1 depicts a typical data set for used for one least
squares evaluation. The second graph in this figure
depicts the frequency bands associated with the three
values of δ. The first set of evaluations considered three
damping ratios representative of light damping, ζ =
0.005, moderate damping, ζ = 0.03, and heavy damping,
ζ = 0.20. The values of λ and A were identified for
each randomized FRF, and the mean value, E [ ] , and
standard deviation, σ [ ] of both quantities was computed.
Results for the light damping case are described in Tables
1 to 3, with the sequence corresponding to progressively
decreasing values of ∆ω.

In the light damping case the best overall results, in terms
of agreement of the average estimate for the eigenvalue
and residue, as well as the size of the standard deviations,

G
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Figure 1: GjP (ω) and Gnoise (ω) when Ω = 1, ζ = 0.005,
A = −2 + 2.3i, ε = 0.20, and ∆ω = 0.5ζΩ.

are obtained by cutting off the data at -6 dB relative
to the peak (Table 2). When the input data values
are selected to fit this criterion, the smallest standard
deviations of both parts of the eigenvalue and residue are
obtained when the frequency increment is one quarter of
the bandwidth. The corresponding errors in the mean
values of the eigenvalue are 0.02% for the imaginary part
(“damped natural frequency”) and 5% for the real part
(damping ratio), while the mean values of both parts
of the residue are both less than 4% different from the
respective true values.

In the moderate damping case the results obtained using

δ(dB) −3 −6 −9
N (average) 2.033 2.13 4.63
E [Re (λ)] −0.00495 −0.00505 −0.00573
E [Im (λ)] 1.00036 0.99975 0.99958
σ [Re (λ)] 0.00136 0.00138 0.00216
σ [Im (λ)] 0.00142 0.00189 0.00455
E [Re (A)] −1.90975 −2.19162 −2.26479
E [Im (A)] 2.38571 2.31945 2.74639
σ [Re (A)] 0.76261 1.03460 1.27882
σ [Im (A)] 0.80179 0.76523 0.96692

Table 1: Statistical results of the identification, l=-
0.005+0.99999i, A=-2+2.3i, e=0.2, Dw=2zW.



δ(dB) −3 −6 −9
N (average) 2.40 4.20 7.83
E [Re (λ)] −0.00515 −0.00466 −0.00475
E [Im (λ)] 0.99964 0.99972 1.00040
σ [Re (λ)] 0.00103 0.00096 0.00104
σ [Im (λ)] 0.00116 0.00106 0.00144
E [Re (A)] −2.2680 −2.0499 −1.9182
E [Im (A)] 2.3756 2.3562 2.5315
σ [Re (A)] 0.674 0.481 0.554
σ [Im (A)] 0.537 0.436 0.430

Table 2: Statistical results of the identification, l=-
0.005+0.99999i, A=-2+2.3i, e=0.2, Dw=zW.

δ(dB) −3 −6 −9
N (average) 3.83 7.87 16.57
E [Re (λ)] −0.00486 −0.00476 −0.00477
E [Im (λ)] 0.99988 0.99983 0.99988
σ [Re (λ)] 0.00110 0.00060 0.00069
σ [Im (λ)] 0.00083 0.00090 0.00114
E [Re (A)] −2.1015 −2.06366 −2.06685
E [Im (A)] 2.3090 2.3331 2.4249
σ [Re (A)] 0.512 0.427 0.396
σ [Im (A)] 0.490 0.323 0.303

Table 3: Statistical results of the identification, l=-
0.005+0.99999i, A=-2+2.3i, e=0.2, Dw=0.5zW.

a -3dB cutoff and a frequency increment equal to the
modal bandwidth appeared to be quite good. However,
the cutoff criterion is such that only two data values
near the peak FRF were used in the identification, which
is the minimum possible. This would suggest that the
good agreement is a matter of happenstance. Otherwise,
the smallest standard deviations for the eigenvalues and
residues were obtained once again when the cutoff is -
6 dB and the frequency increment is one quarter the
bandwidth. The results for this case are described in
Table 4; the errors are 0.1% for Im (λ) , 1.6% for Re (λ) ,
and less than 9% for both parts of A. The situation
for heavy damping is essentially the same, in that the
lowest standard deviations are obtained with a cutoff
of -6 dB and a frequency increment that is one quarter
the bandwidth. The corresponding statistical results are
described in Table 5. The errors are 0.7% for Im (λ) ,
0.9% for Re (λ) , and less than 10% for both parts of A.

A trend identified from examination of the results for
these three damping ratios is that for any frequency incre-
ment and cutoff, the best overall agreement is obtained
for Im (λ) and the greatest disagreement is for A. In the
best case the ratio of a standard deviation of either part
of A to the mean value of A is essentially the noise para-

δ(dB) −3 −6 −9
N (average) 4.20 7.50 19.53
E [Re (λ)] −0.02864 −0.02953 −0.02971
E [Im (λ)] 1.00023 1.00092 1.00139
σ [Re (λ)] 0.00563 0.00458 0.00504
σ [Im (λ)] 0.0052 0.0050 0.0122
E [Re (A)] −1.92261 −2.03182 −2.07687
E [Im (A)] 2.38676 2.50286 2.46016
σ [Re (A)] 0.400 0.376 0.443
σ [Im (A)] 0.559 0.306 0.214

Table 4: Statistical results of the identification, l=-
0.030+0.99955i, A=-2+2.3i, e=0.2, Dw=0.5zW.

δ(dB) −3 −6 −9
N (average) 3.73 9.47 16.43
E [Re (λ)] −0.19631 −0.20184 −0.18939
E [Im (λ)] 0.99234 0.98657 0.97870
σ [Re (λ)] 0.0440 0.0282 0.0290
σ [Im (λ)] 0.0567 0.0418 0.0472
E [Re (A)] −1.91297 −1.96961 −2.06895
E [Im (A)] 2.50656 2.51170 2.22505
σ [Re (A)] 0.861 0.371 0.420
σ [Im (A)] 0.687 0.402 0.397

Table 5: Statistical results of the identification, l=-
0.2+0.97980i, A=-2+2.3i, e=0.2, Dw=0.5zW.

meter ε used to construct the FRF data, while the ratios
of the standard deviations for both parts of λ with re-
spect to their corresponding mean values is substantially
less than ε. To demonstrate that these tendencies are typ-
ical, Table 6 displays the results obtained for moderate
damping when the noise parameter is ε = 0.05 and the
frequency increment is one quarter the bandwidth. With
a -6 dB cutoff, the errors are 0.004% for Im (λ) , 0.5% for
Re (λ) , and less than 1% for either part of A. The ra-
tios of the standard deviations for the parts of λ to the
mean values are much smaller than ε, while the standard
deviation ratios for both parts of A are comparable to ε.

The last item for consideration is the effectiveness of
the linear least squares scheme for structural damping.
The standard form of a frequency response function for a
system with structural damping is

Gjp (ω) =
U

Ω2 (1 + iγ)− ω2
(19)

where U is real, Ω is the undamped natural frequency,
and γ is the loss factor. To identify the equivalent λ
and A values, eq. (3) in the vicinity of ω2 = α2 + β2,
i.e. frequencies near the peak FRF, is matched to the



δ(dB) −3 −6 −9
N (average) 4.07 7.13 10.77
E [Re (λ)] −0.02971 −0.03014 −0.02995
E [Im (λ)] 0.99950 0.99951 0.99970
σ [Re (λ)] 0.00147 0.00103 0.00098
σ [Im (λ)] 0.00126 0.00095 0.00105
E [Re (A)] −1.98355 −2.00757 −1.99708
E [Im (A)] 2.28189 2.32264 2.31821
σ [Re (A)] 0.125 0.094 0.069
σ [Im (A)] 0.110 0.089 0.063

Table 6: Statistical results of the identification, l=-
0.030+0.99955i, A=-2+2.3i, e=0.2, Dw=0.5zW.

preceding. The two match to first order if

¡
α2 + β2

¢1/2
= Ω, α =

1

2
γΩ

Ar = 0, −βAi

α
=

U

γΩ

(20)

which leads to

λ = −12γΩ+
¡
1− 1

4γ
2
¢1/2

Ωi

A = − U¡
1− 1

4γ
2
¢1/2

Ω
i (21)

Each entry in Tables 7-9 describes the results of thirty
runs with ε = 0.2 for various ∆ω and δ corresponding
to Ω = U = 1, and γ = 0.1. The statistical trends
are consistent with those in the previous cases. Once
again, the best results are obtained with a frequency
increment equal to half the modal bandwidth, with the
data cutoff set at -6 dB. In that case the mean eigenvalue
shows a smaller discrepancy relative to the true value
than does the residue, with errors of 0.1% for Im (λ) ,
1 % for Re (λ) , and 4% for both parts of A relative to
the average value of |A|. Also, for any sampling scheme
the ratio of the standard deviation to the corresponding
mean value is smaller for Im (λ) than it is for Re (λ) ,
and both are smaller than the ratios for A. As was found
for the previous cases, the coarsest sampling (frequency
increment equal to the bandwidth) leads to a ratio
of the standard deviation of either part of A to the
corresponding mean value that is approximately 2ε, but
those values now drop well below ε for the finest sampling
and optimal data cutoff.

4 CONCLUSIONS

The linear least squares procedure developed here ad-
dresses the task of identifying the modal eigenvalue and
residue corresponding to a state-space modal description

δ(dB) −3 −6 −9
N (average) 2.00000 2.13333 4.16667
E [Re (λ)] −0.05220 −0.04892 −0.05468
E [Im (λ)] 0.99800 0.99784 1.00162
σ [Re (λ)] 0.01939 0.01717 0.01850
σ [Im (λ)] 0.01593 0.01565 0.03027
E [Re (A)] 0.02003 0.03952 −0.11475
E [Im (A)] −1.01319 −1.04851 −1.19037
σ [Re (A)] 0.268 0.314 0.434
σ [Im (A)] 0.349 0.302 0.235

Table 7: Statistical results of the identification, structural
damping, g=0.10, U=1,l=-0.050+0.99875i, A=-1.00125i,
e=0.2, Dw=2zW.

δ(dB) −3 −6 −9
N (average) 2.47 3.97 9.43
E [Re (λ)] −0.04912 −0.05237 −0.04675
E [Im (λ)] 0.99973 0.99922 0.99359
σ [Re (λ)] 0.01320 0.01199 0.01166
σ [Im (λ)] 0.01099 0.01047 0.01614
E [Re (A)] −0.04565 −0.01162 −0.04928
E [Im (A)] −0.98511 −1.10340 −1.03602
σ [Re (A)] 0.224 0.180 0.180
σ [Im (A)] 0.214 0.165 0.142

Table 8: Statistical results of the identification, structural
damping, g=0.10, U=1,l=-0.050+0.99875i, A=-1.00125i,
e=0.2, Dw=zW.

of a system with arbitrary viscous damping. The proce-
dure is an SDOF technique that assumes that the FRF
contribution of modes other than the one in focus are
negligible. In the case of a one-degree-of-freedom sys-
tem without noise the results are exact. For data that is
contaminated with noise, overdetermined equations are
obtained when complex FRF values for more than two
excitation frequencies are used in the least squares proce-
dure. In order to obtain the best results with noisy data,
the FRF values were selected from points in the vicinity
of the peak FRF magnitude.

A series of statistical evaluations of analytical data con-
sidered data contaminated with a specific noise level,
scaled relative to the peak FRF. The trials considered
the effect of using various sampling intervals and cutoffs
that define the frequency interval from which the FRF
values are selected. It was found that the best results
were obtained if the frequency sampling increment is se-
lected to be one quarter of the modal bandwidth, and the
data values are selected from the interval over which the
FRF magnitude exceeds -6 dB relative to the peak, which
corresponds to the quarter-power points. Using FRF val-



δ(dB) −3 −6 −9
N (average) 4.03 7.70 16.13
E [Re (λ)] −0.04955 −0.04936 −0.04788
E [Im (λ)] 1.00333 0.99964 1.00166
σ [Re (λ)] 0.01058 0.00795 0.00790
σ [Im (λ)] 0.01088 0.00745 0.00847
E [Re (A)] −0.08375 −0.03674 −0.09416
E [Im (A)] −1.02469 −1.04355 −1.05872
σ [Re (A)] 0.214 0.113 0.102
σ [Im (A)] 0.201 0.103 0.081

Table 9: Statistical results of the identification, structural
damping, g=0.10, U=1,l=-0.050+0.99875i, A=-1.00125i,
e=0.2, Dw=0.5zW.

ues that fall below this cutoff was shown to decrease the
quality of the estimates, apparently because the signal to
noise ratio for such points is lower. A finer sampling inter-
val was not considered, but it is reasonable to conjecture
that the results would improve in that case.

The evaluations demonstrated that the smallest error is
obtained for the imaginary part of the eigenvalue, which
is essentially the undamped natural frequency if damping
is light. The error for the estimated imaginary part of
the eigenvalue, which is proportional to critical damping
ratio, was greater than the real part, and the error for
both parts of the residue were largest. However, these
errors as a fraction of the correct value, were always
lower than the noise ratio. Furthermore, at the optimal
sampling rate and frequency cutoff, the ratio of the
standard deviation of each quantity to the mean value
was substantially lower than the noise ratio.

The linear least squares scheme was shown to be equally
effective at identifying the modal damping ratio corre-
sponding to a structural damping model. The primary
reason the technique was developed was to expedite the
AMI identification procedure [7], [8] which performs an
MDOF identification by iterating on SDOF fits to the
FRF data. Used on its own for FRF data of a multi-
degree-of-freedom system, the present technique is lim-
ited by the assumption that each mode is dominant in the
vicinity of its resonance, which is an attribute it shares
with other SDOF schemes. This is often the case for the
low frequency modes, especially if the structure is not too
complex. A comparison of results obtained by the present
procedure to those obtained from a commercial modal an-
alyzer are provided in a companion paper [6]. However,
even for systems where some modes are close, linear least
squares SDOF offers a quick qualitative check of MDOF
identification results in selected frequency ranges.
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