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Introduction

“... two fluids of different densities superposed aver the other (or accelerated
towards each other); the instability of the plamerface between the two fluids, when it
occurs, is called the Rayleigh-Taylor instabilifg].

“If the horizontal surface of a liquid at rest undeavity is displaced into the form of
regular small corrugations and then released, stgruscillatory waves are produced.
Theoretically, a liquid could exist in a state ofstable equilibrium with a flat lower
horizontal surface supported by air pressure” [3].

The physics involved are rather intuitive: “heatyfsfalls, light stuff rises”. The
intuitive nature of stability can be seen with & bathe bottom of a valley contrasted to
the unstable situation of a ball set on top oflla & ball on the top of a hill, given a
slight nudge in any direction, will continue in tithrection gaining speed until it reaches
the bottom of the hill. A ball at the bottom ofiteg will return to its initial position after
a small displacement; however, the ball may very @geillate about its initial position
until the dissipative force of friction brings d@ test. An analogous situation would be a
spherical balloon filled with a gas heavier tham @ig., carbon dioxide, replacing the
ball. An inverse situation may be a sphericaldmil filled with helium in a stable
situation at the ceiling of a cave, or in an uni&taituation, balancing precipitously on
the tip of a stalactite where any displacement edlise the balloon to rise to the ceiling.

In the context of the Rayleigh-Taylor instabilitiiere are two fluids being
considered, one above the other, which are sepldogta horizontal plane.  If the light
fluid is above the heavy fluid, the interface betwéhe two is “stable” because the heavy
stuff may be considered to have already fallenthedight stuff has already risen.
Stable does not imply there is no motion, if therair above a water surface, a



displacement of the surface will result in waveséling horizontally on the surface. For
a heavy fluid over a light fluid, the heavy stufdmis to fall and the light stuff wants to
rise; however, for a perfectly flat interface thare no avenues for this vertical motion to
occur. When this perfectly flat interface is dagad (perturbed) the waves generated (as
seen in the stable case) provide the necessarysm@athe light fluid to rise (in the peak
of the wave) and the heavy fluid to fall, in thélexof the wave. These notes will
guantify this motion.

To begin we will consider a large box filled wittlaid with the coordinate system
shown as is Fig. 1.
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Figure 1. Fluid inside of a large box.

The coordinate system hasis the horizontak as the vertical, anglas going into the
page. The acceleration of gravity,is in the negative vertical direction. The Navie
Stokes equations govern the motion in fluid dynanaicd are a set of five coupled,
conservation equations: mass, momentum (one equati each of the three principal
directions), and energy.

Conservation of M ass

The continuity, or conservation of mass, equatiom@ger volume basis is:
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wherepis densityt is time, O is the vector differential operator, awdis the velocity
vector. The continuity equation is expanded as:
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whereU, V, andW are the velocity components in tkgy, andz directions. Now we will
make our first assumption: the system we areasted in is 2-dimensional. Thus, we
will neglect any changes in tlyedirection and this makes any derivatives with eg$po

y equal to zero (the third term in the above equatidhe above equation reduces to:



9,9 ()49 (W)=
o0 Har )+ (o) =0
Now expand this equation:
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Our next assumption will be one of incompressipiiir a given layer of fluid, that is, a
horizontal plane of fluid at a given z coordinaté aave a constant density. Thus,
changes in density (with respect to time and spa®ero meaning the temporal and
spatial derivatives are zero. The above equa&duoaes to:

Now, dividing through by density we have:
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A couple of notes about this equation are: 1) weleamployed the “Boussinesq
approximation” which is another way of saying tlemsity is assumed constant, and 2)
the equation is said to be “solenoidal”’ as therdédin of a solenoidal vector is one
whose divergence is zero, i.€l[V =0.

The continuity equation is almost in its finalfofor the analysis, and the final
step is to write the velocity in terms of a pereahguantity. We will consider that the
fluid is initially at a constant state and only saer small changes from this state:

U=U,+u
V=V, +v
W =W, +w,

where the subscript “0” indicates the constaniahitalue and the lower-case letters are
small velocity deviations. The deviations in véfpare noted to be functions of both
time and space, e.giu(x,y,zt). Substituting into the above solenoidal equation
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and noting that derivatives of constant valueszare, we have the final form of the
continuity equation:

Conservation of Momentum

The derivative operatdd/Dt, sometimes called the material, substantial, t@al to
derivative is defined as:
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whereq may be a scalar, such as density, or a vecton, &sigelocity. We employ the
total derivative when using the Eulerian point efw (as opposed to the Lagrangian).
From this perspective we analyze a given poinpace, perhaps an infinitesimally small
cube of dimensiondxxdyxdz, and the first term is how muchis changing in time and
the last three terms are how mugts being convected through this small volumeq i
the velocity, then we have the Eulerian accelematio

Newton’s second law of motion (force equals maseg acceleration) on a per
volume basis is:
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where the body force we will consider is due tosgyaand the surface forces are due to
pressure and shear. The momentum equation themlesc

DV
—==pg-Op+0,
P PI~=PTEL

where the acceleration vectorgs= O +0j - gl2 , pis the pressure, andis the viscous

stress tensor. We will say that ,u() and employ the inviscid assumptigm=Q) so
we will neglect the viscous stress tensor terme flomentum equation becomes:
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Thex-momentum equation is the first of the three momnengéquations:
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and noting thag),=0 and expanding the total derivative:
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The pressure and density will be rewritten in teahaverage valueg(@ndp) with an

additional, small, “perturbed” quantitgp anddp. The average values prandp are

constant within a given fluid layer at a constgritowever, due to the hydrostatic

pressure gradient, they are both functions of heighe perturbed densifpis

considered incompressible so that as a small eleof@émcreased density fluid moves

through the fluid, this small element’s densitylwibt change. Thereforg=0(z) and

p=p(2) andJo=3J0(x,y,zt) andp=3Pp(x,y,zt). Substituting these into the x-momentum

equation along with the decomposed velocities gives
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and expanding the velocity terms and neglectingdives with respect tg:
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The uppercase, subscripted velocities have beemasisto be constant and their
derivatives are set equal to zero in the abovetenua
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At this point, another assumption will be made rdgay the initial velocity condition. In
our box of fluid we will assume that the initialleity is zero for our Rayleigh-Taylor
analysis, however, if we were conducting a Kelviehhholtz (shear layer) instability
analysis, this would be the correetnomentum equation and the average velocity in the
x-direction,Up, would be non-zero. The x-momentum equation besom
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Expanding the density and pressure terms, thistiequiaecomes:
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The next step is to linearize the equation. Tis&fjoation is: changes in small
quantities are initially themselves, small; therefa small quantity multiplied by a small
guantity is much smaller than the initially smallagtities and may therefore be
neglected, e.gu(au/ax) =0. Finally, using this assumption and the fact thestonly a
function ofz, the x-momentum equation becomes:
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We will neglect the analysis of the y-momentum eiguefor this two-
dimensional study. As an exercise, the studentstaywith the general form of tlye
momentum equation and make a step by step anagsigas done here for the
momentum equation, and learn why this equationdsnsequential to our two-
dimensional Rayleigh-Taylor study.

Thez-momentum equation is:

Conducting a similar step by step analysis of égjsation, and noting that our
accelerationg = ~gk , thez-momentum equation reduces to:
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and expanding the density and pressure terms gives:
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The hydrostatic pressung(z), at anyz-location is due to the weight of fluid above idan
is related to the density @p/0z=-pg. Using this in the above equation gives the final
form of thezzmomentum equation:
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The last of the Navier-Stokes equations is theggnequation. We will neglect
this equation by saying that there is no heat akvyooduced by, or transferred to, the
system, there are no dissipative processes, argystem is isothermal.
A recap of the continuity, and x- and z-momentuuagtions:
ou , ow
T+ = 0’
ox 0z
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We have three equations and four unknownsy, dp, anddp. For our fourth equation,
will once again employ the continuity equation tith the density perturbation, where

previously we used the density, (and use the assaumihat the initial velocity is zero):
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Neglecting derivatives with respect to y and exaagrd
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and neglecting the nonlinear terms:
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Noting the term in parenthesis is zero from thet fanalysis of the continuity equation
and thato=0(2) (nott or x), the final form of our fourth equation is:

0dp _ 0P

W——.
ot 0z

Review list of assumptions:

2-dimensional, i.ed/dy=0.

incompressibility for a given layer of fluid.

velocity rewritten in terms of initial constardlues plus small deviations.
inviscid.

initial velocities are zero.

momentum equation is linearized.

neglect energy equation (isothermal, etc.)
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Normal Mode Analysis

For our linear stability analysis we begin withiaitially stationary flow and assume
there are small perturbations to the velocity dredghysical variables. The density and
pressure are only functions oand we consider a small disturbance in terms of a
periodic wave along a planezt0. For a single mode disturbance (in our two-
dimensionak-z plane) the amplituded] of a disturbance is described by:

A% 2,t) = A (z,t) exp(k),
wherek is the wave number. [Note: recall the exponeméktion of Euler’s equation:
€ =cos@) +isin(@).] We will seek solutions in time fa¥%(zt) in the exponential
form:

A(z1) = A(2)exp(t),



and the disturbance is then described as:

A(x, z,t) = A (2) exp(nt) exp(kx),

A(X, z,t) = A (2) expkx + nt).
The requirement that the equations have a noratsalution to specified boundary
conditions is a characteristic value problem (geavalue problem) for the eigenvalue
corresponding to the wave numlkerinstead of a single mode, we could have
generalized this to a number of superposed modehwiould then have independent
solutions with a corresponding eigenvalue for emalle number. A positive eigenvalue
will result in a positive exponential and an ungtadituation and a negative eigenvalue
will result in a stable situation- one that reduttessamplitude.

For our two velocities and density and pressuré&ave:
u =u(x, zt) = u, (z) expikx + nt),

W =W(X, zt) = w, (2) expkx + nt),
90 = 9o(X, z,t) = Jp, (z) exp(kx + nt),
P = P(X,z,1) = P, (2) expkx + nt).

Recalling our four Navier-Stokes equations:
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and substituting in the four amplitude relations:
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The only derivatives in the above equations arb véspect ta, and therefore the partial

notation is dropped. Multiplying Eq. (2) ldyand substituting ¢w/dz) for iku from Eq.
(1) we have:
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and solving for dp,
__n jdw (6)
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and then substituting into Eqg. (3):
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Solving Eq. (4) for dr:
Jp = —Wld_p, (8)
n dz
and substituting into Eq. (7):
- gd_mig( d_Wj )
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and multiplying though bié/n:
d( dw)_ ., _  Kk’dp (10)
dz['o dzj pREW =g n? dz

This is the governing differential equation we widle to solve for the instability between
two fluids.

The Rayleigh-Taylor Instability for Two Incompressible Fluids

The box of fluid shown in Fig. 1 is now filled witivo incompressible fluids of differing
densities, separated by an interface with a peatiot imposed as shown in Fig. 2.
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Figure 2. Two fluids inside of a large box.

For a layer of fluid aboves) or below (o) the interface, the density is constant and the
governing differential equation, Eq. (10), reduttes

d*w

dz®
Using the boundary conditions that the velocityaso at large distances above and
below the interface, and the fact that the veloaitthe interface is matched for the two
solutions (kinematic constraint), we have:

w, =we™  (z>0),

-k?w=0.

w, =w,e* (z<0).
Next we apply Eq. (9) at the interface. First wdtiply through bydz and integrate:

j d[,o%vj—j pkzwdzz—J ng:]—idp.



Now integrating this across the interface, acrosmfinitesimal distancedg=0), the
second term becomes zero, and the other two teens a

dw k?
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P, (= kw) - p, (kw) = -wg ':]—z(pz -p),

k
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and finally, solving for the eigenvalune

n= gku
p2 + pl
Thus, as our intuition initially told us, the systés unstable if the heavy fluid is above
the lighter fluid (o, > p,), because the eigenvalue is real, and stable iight fluid is
above the heavy fluidd, < p,), because the eigenvalue is imaginary. The
quantity(p, - p,)/(p, + p,) is called the Atwood numbeA), and a more compact form
for the eigenvalue is them= \/gTA For a positive Atwood number, the interface is

unstable, and for a negative value it is stableally, atx=0, at a peak of the
perturbation, we find that the amplitude of a pdy&tion grows proportional to the

quantity expt./gkA). Thus, in the linear regime analyzed here, thevtiroate is

exponential in time, this should not be confusetth wie nonlinear growth rate, which is
by some theories, linear with time.



