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ABSTRACT: The effect of a negative bulk modulus phase in elastic composites is
studied. Negative bulk modulus K<0 is shown to be possible in selected unit cells.
In isotropic solids, K<0 can be attained when negative Poisson’s ratio � is sufficiently
small, below the stability limit (for stress control) �¼�1. Such materials, if used as
inclusions, are predicted to be stable with respect to the band formation, even if they
are large. Composites with spherical inclusions of negative bulk moduli are shown
to exhibit negative Poisson’s ratio and anomalies in composite bulk modulus and
Young’s modulus (and in the corresponding mechanical damping) but not in the
shear modulus.

KEY WORDS: stability, viscoelasticity, negative Poisson’s ratio, negative modulus.

INTRODUCTION

F
OR MOST ELASTIC systems, stiffness is positive i.e., a deformed object experiences a
force in the same direction as the deformation. Negative stiffness is possible in the

systems, such as prestrained objects including postbuckled elements, which contain stored
energy [1]. Heterogeneous systems with one constituent of negative stiffness are of interest
since they are predicted to give rise to extreme overall damping and stiffness [2], high
viscoelastic damping, and negative axial stiffness was observed [3] in compliant systems
containing postbuckled tubes. High viscoelastic damping has also been observed in
metal matrix (Sn) composites containing VO2 particulate inclusions [4] which undergo
a ferroelastic phase transformation. Ferroelastics are of interest in this context since they
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are predicted to exhibit negative stiffness below the transformation temperature.
Ferroelastics undergo a shear instability in which the crystal structure changes form as
the temperature is lowered. This has been understood in the context of the free energy in the
Landau theory having a relative maximum, corresponding to unstable equilibrium, below
the material’s transformation temperature Tc [5]. Since the force is proportional to the
gradient of the energy, the region near a relative maximum of energy corresponds to
negative stiffness which is ordinarily not observed since shear instability in ferroelastics is
associated with the formation of bands or domains [6] below a transition temperature Tc.
Multidomain blocks of material are known to have positive stiffness, and are therefore not
of interest in the context of inclusions in negative stiffness-based composites. To achieve
negative shear modulus G in a ferroelastic, the inclusion must be a single domain. Small
particles may be single domains as a consequence of the surface energy penalty of the band
formation. For some materials, the domain size can range from tens of mm up to several
millimeters in size, but for other materials of interest, including shape memory alloys,
the domains are tens of nanometer in size. Making and embedding granules of this size can
be a challenge to the experimentalist, therefore, variants of negative stiffness not subject to
banding instability are of interest.

The rationale for considering negative bulk modulus K is that we can have K<0, and
still have stability with respect to formation of bands by ensuring that G>0. Such a
material is unstable with respect to global deformation. It can be stabilized by a constraint
on its boundaries, in contrast to G<0 material. In a material with K<0 used in a
composite, the constraint is supplied by the surrounding matrix.

STABILITY OF A CONTINUUM: EFFECT OF BULK MODULUS

In isotropic elastic solids, the ‘allowable’ range of Poisson’s ratio �,

�1 < � < 0:5 ð1Þ

corresponds to the requirement that the shear (G) and bulk (K) moduli [7] be positive for
stability of an unconstrained block of material. The lack of constraint is equivalent to a
surface traction boundary condition in the language of elasticity theory. Common
materials have Poisson’s ratios close to 0.3, and rubbery materials have Poisson’s ratios
close to 0.5. In view of the possibility of negative Poisson’s ratio, foams [8,9] with � as
small as �0.8 have been conceptualized, fabricated, and studied. Negative Poisson’s ratio
differs from negative stiffness. Poisson’s ratio is defined as the negative lateral strain of
a stretched or compressed body divided by its longitudinal strain. Most materials when
axially stretched will contract laterally, hence they have a positive Poisson’s ratio.
Poisson’s ratio is dimensionless, and for most solids its value ranges between 0.25 and
0.33. Strictly, negative Poisson’s ratio in a heterogeneous solid does not require an empty
space, but a large contrast between constituent properties is required in a hierarchical
composite realization [10]. As Poisson’s ratio approaches �1, the bulk modulus becomes
much less than the shear modulus.

Strong ellipticity entails, Cijklninkmjml>0 for all nonzero vectors n and m and Cijkl as the
modulus tensor. The corresponding range of isotropic elastic constants, is [11]

G>0 and �<0:5 or �>1: ð2a,bÞ
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Since, E¼ 2G(1þ �), this allows negative Young’s modulus E and bulk modulus K,
specifically

�1<E <1 or �
4G

3
<K<1 ð3Þ

The second condition (2b) for strong ellipticity entails the constrained tensorial modulus
be positive, C1111>0. Strongly elliptic materials are stable with respect to formation of
bands.

Displacement-type boundary value problems have unique solutions if [12] the elastic
constants are in the range for strong ellipticity. This range is considerably less restrictive
than that for the traction condition. This means that a block of material constrained at the
surface can have a negative bulk modulus or Young’s modulus and be stable with respect
to both global deformation and band formation.

We can have K<0 within strong ellipticity if, �¼G is sufficiently larger than C1111

since [13].

K ¼ �þ
2

3
� ¼ �þ

6

3
��

4

3
� ¼ �þ 2��

4

3
� ¼ C1111 �

4

3
� ð4Þ

with � and � as the Lamé constants.
The range of elastic moduli corresponding to stability and instability under various

conditions is shown in the map in Figure 1. The representation of the upper right
quadrant, as well as the term ‘dilational’ is due to Milton [10]. The stippled region cor-
responds to �1<�<�1 hence to E<0 as well as K<0. The shaded region corresponds to
G<0 or C1111<0 hence, a failure of strong ellipticity.

Figure 1. Map of elastic material properties corresponding to different values of bulk modulus K and shear
modulus G, allowing negative values.
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NEGATIVE MODULI

Negative Spring Constant

Negative stiffness is known to occur in the context of postbuckled structures and objects
[14]. Stiffness of a lumped system refers to the ratio of force to deflection. A column which
has been buckled into an ‘S’-shaped configuration is unstable and tends to snap through.
By pressing laterally on the column, one can cause it to snap through. If the load–
deformation characteristic is studied in the displacement control (which entails a hard
constraint), negative stiffness is observed experimentally. Negative stiffness also occurs in
single-cell models of foam materials. Such models were observed experimentally to exhibit
a compressive force–deformation relation which is not monotonic [15] . Inward bulge of
cell ribs gives rise to a geometric nonlinearity.

Negative Shear Modulus

Prestrained lattice cells theoretically can give rise to negative Poisson’s ratio and even
negative shear modulus [16]. Such lattice structures were originally examined in a study
of generalized continuum mechanics [17]. Negative shear modulus is also inferred from
the behavior of ferroelastic and ferroelectric materials in the vicinity of phase transitions.
As temperature is lowered to the transformation temperature Tc, the shear modulus
softens to zero (or as close to zero as the experiment can resolve). Below Tc, bands or
domains form in the material, as anticipated by the continuum theory and illustrated in
the map in Figure 1. Single domain crystals are possible, based on a competition between
the surface energy and the energy associated with domain boundaries.

Negative Bulk Modulus

EXISTENCE
Since negative bulk modulus materials are not subject to instability associated with

domain formation, it is natural to ask whether such materials exist.
In crystalline materials, softening of the bulk modulus (analogous to softening of

the shear modulus in ferroelastics) has been observed in YbInCu4 [18] crystals at a
temperature of 67K. Cerium [19] exhibits a volumetric phase transformation [20] in
response to low temperature (116K at 1 atm) or high pressure (7670 atm at 298K). There
is a 15% volume change with no change in crystal structure. Such transitions have been
interpreted in the context of negative compressibility [21] hence, negative bulk modulus
K<0. Consider in this vein the temperature–pressure phase diagram of tin [22]. Tin
undergoes a transformation from tetragonal (white or �-Sn) to diamond structure (gray
or �-Sn) with a 26% volume increase. The transformation under temperature control is
very slow [23]. Hydrostatic compression favors the high density white phase. Therefore,
compression of gray tin under stress control will cause a snap through effect. In principle,
if this compression were done under displacement control, a negative bulk modulus would
occur. In general, a transformation temperature which decreases with increasing pressure
will favor a snap through effect, provided the low temperature phase is less dense than
the high density phase. Also, analysis [24] of an Ising model of a lattice predicts K<0 near
the critical temperature.
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To illustrate effects which can occur in crystals, we consider a lattice (Figure 2), due to
Berglund [17] who considered positive moduli in the context of generalized continuum
mechanics. The lattice model allows for noncentral forces via crossed elastic bands which
pass over the edges of circular nodes. The length l0 of a band is given by l0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d 2 � 4r2
p

,
where d is the spacing between node centers at equilibrium, and r is the radius of a node.
The spring constant of a vertical or horizontal spring is k1, k2 is that of a diagonal spring,
and k3 is that of a band. Prestrain in the lattice is provided as follows. The natural lengths
of the elastic elements are h1, h2, and h3, related to the lattice spacing d by h1¼ fd ,
h2 ¼

ffiffiffi
2
p

gh1. Prestrain is present if either f or g differs from 1. Equilibrium of the
nodes implies the remaining natural length is h3 ¼ ðd=l0Þð1=k3Þ k2=

ffiffiffi
2
p� �

h2 � d
ffiffiffi
2
p� �
þ

�
k1ðh1 � d Þ� þ l0.

The structure is cubic, but elastic isotropy may be achieved by the following choice of
the stiffnesses k1, k2, and k3 of the elastic ligaments.

k2 ¼
h1k1ffiffiffi
2
p

h2
þ

ffiffiffi
2
p

h3 l20 � 4r2
� �
h2l0d

k3: ð5Þ

The governing equations for effective elastic properties are as follows:

G ¼ k1 þ 2�
3h2ffiffiffi
2
p

d

� �
k2 þ 2�

8r2h3
d2l0

� �
k3, ð6Þ
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Figure 2. Lattice cell model.
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� ¼
ffiffiffi
2
p k2h2

d
� Gþ 2�, ð7Þ

with a¼ 4k3r
2/d2. The bulk modulus K is calculated via Equation (4). Poisson’s ratio is

given by

� ¼
3K� 2G

2ð3Kþ GÞ
, or � ¼

�

2ð�þ GÞ
: ð8Þ

Here, G, K, and � represent shear, bulk modulus, and Poisson’s ratio, respectively. The
lattice gives rise to a Poisson’s ratio of 1/4 if the circular nodes have zero size, giving rise to
purely central forces provided there is no prestrain and the elastic isotropy condition (5)
is satisfied. Introduction of prestrain in the bands (drawn as straight lines rather than
as springs) can raise or lower the Poisson’s ratio and can give rise to negative Poisson’s
ratio [25].

Results for an assumption of a lattice with elastic isotropy (Equation (5)) and k1¼ 1,
k3¼ 1, f¼ 2/((3�1)/g), and r/d¼ 0.1 are as shown, as a function of prestrain ratio, in
Figure 3. In this example, preload in k3 is not needed, so f is related to g to balance the
preload in k1 and k2. As shown in Figure 3, if the prestrain is of sufficient magnitude,
moduli can become negative. Small g corresponds to the stretching of the diagonal
k2 elements; for sufficiently small g, the shear modulus G becomes negative and Poisson’s
ratio exceeds 1/2. Large g corresponds to the compression of these elements; for

Figure 3. Elastic properties of a lattice model as a function of prestrain in the diagonal elements as specified
by dimensionless ratio g; g¼1 corresponds to no prestrain. Shear modulus G (squares) and bulk modulus K
(triangles) are normalized to k1. Dash line indicates zero modulus. Poisson’s ratio � (solid circles) can be
negative and can exceed the stability limits for a stress boundary condition.
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sufficiently large g, the bulk modulus K becomes negative and Poisson’s ratio is less
than �1. The diagonal stiffness k2, determined by the isotropy condition (5), remains
positive throughout the range of g in Figure 3.

In summary, negative bulk modulus may be inferred from the behavior of certain
materials in the vicinity of phase transformations as well as from a lattice model of a
crystal.

STABILITY
While it is known that an object with negative bulk modulus can be stable if constrained

on all its boundaries, it is of interest in the context of potential experiments whether
it might be stable under partial constraint as in a tension/compression test. We therefore
consider stability of negative bulk modulus in the context of a body under displacement
constraint along two parallel faces, as is done in a measurement of Young’s modulus
in displacement control. In this case, the lateral surfaces are under a specified stress of
zero. Several cases of transverse deformation are considered in the context of stability
under controlled transverse stress.

Consider the elementary isotropic form for Hooke’s law with " as strain and � as stress.

"XX ¼
1

E

� �
�XX � ��YY � ��ZZf g

"YY ¼
1

E

� �
�YY � ��XX � ��ZZf g

"ZZ ¼
1

E

� �
�ZZ � ��XX � ��YYf g

ð9a–cÞ

The assumed displacement constraint entails "ZZ¼ 0. Then

�ZZ ¼ ��XX þ ��YY ð10Þ

For Case 1, let the stress on the lateral surfaces be equal: �XX ¼ �YY. Then

"XX ¼
1

E

� �
�XX � ��XX � �

2�XX
� �

¼
�XX
E

	 

ð1� 2�Þð1þ �Þ: ð11Þ

The compliance for transverse two-dimensional bulk deformation is then

"XX
�XX
¼

1

E

� �
ð1� 2�Þð1þ �Þ ð12Þ

For stability with respect to transverse deformation, this compliance must be positive, so

if, E > 0, � > �1 and � < 0:5: ð13Þ

This is the normal range for stability of a bulk elastic solid with all surfaces free.
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The condition "XX=�XX>0 may also be satisfied by the following:

E < 0 and ð1� 2�Þð1þ �Þ < 0: ð14Þ

The range of Poisson’s ratio can then be satisfied by �<�1, in the regime of strong
ellipticity or by �>1/2 which fails strong ellipticity.

For Case 2, let the stress on one lateral surface vanish: �YY¼ 0. Apply a controlled
stress �XX to the remaining two parallel surfaces. Calculating the compliance "XX/�XX
as mentioned, the following conditions are obtained for positive transverse compliance.
For E > 0, j�j < 1, and for E < 0, j�j > 1: These conditions are less restrictive than those
of Case 1.

For Case 3, let the stress on the lateral surfaces be a shear stress: �XX¼��YY. Requiring
the corresponding transverse compliance to be positive, the condition G>0 is obtained.
This is one of the requirements of strong ellipticity. Since we assume that to be satisfied
throughout, Case 3 imposes no additional constraint on the moduli.

For Case 4, consider stability with respect to formation of dimples on the lateral
surfaces. To that end, the ratio of deformation u to localized concentrated load P normal
to the lateral surface is given by the Boussinesq solution [7] with r as the distance from the
point load,

uZ
P
¼ �
ð1� 2�Þð1þ �Þ

2�Er
,

uX
P
¼
ð1� �2Þ

�Er
: ð15Þ

The conditions for positive compliance, hence stability with respect to this mode of
deformation are identical to those of Case 1.

In summary, a bar of material in a simple displacement-controlled tension/compression
test is stable with respect to elementary transverse deformations provided that either of the
two conditions is met. The first condition E>0, �>�1, and �<0.5, corresponds to the
usual range of properties for stability of an unconstrained block. The second condition is
E<0 and �<�1. This suggests that negative moduli could be measured in such a test;
however, we make the following caveat. Demonstration of stability requires that all
possible modes of instability be evaluated. In a continuous medium, there is an infinite
number of such modes; study of these will be conducted in the future.

COMPOSITES WITH INCLUSIONS OF NEGATIVE BULK MODULUS

Properties of composites with granular inclusions of negative bulk modulus are calcu-
lated using the Hashin–Shtrikman ‘lower’ formulae, as follows [26], for shear modulus G
and for bulk modulus K of an elastic composite,

GL ¼ G2 þ
V1

ð1=ðG1 � G2ÞÞ þ ð6ðK2 þ 2G2ÞV2Þ=ð5ð3K2 þ 4G2ÞG2Þ
: ð16Þ

KL ¼ K2 þ
V1ðK1 � K2Þð3K2 þ 4G2Þð Þ

ð3K2 þ 4G2Þ þ 3ðK1 � K2ÞV2ð Þ
: ð17Þ
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Here subscript 1 indicates the inclusion and subscript 2 indicates the matrix; V repre-
sents the corresponding volume fraction. Composites which attain the Hashin–Shtrikman
formulae for bulk modulus have a morphology in which the composite is filled with coated
spheres of different sizes but identical ratio of sphere size to coating thickness. The
attainment is exact for the bulk modulus [27] and approximate for the shear modulus.
Hierarchical laminates [28] exactly attain the shear modulus formula. The Hashin–
Shtrikman formulae represent bounds on the behavior of any isotropic composite, with
the tacit assumption that the modulus of each phase is positive. In the present work, the
moduli are allowed to be complex, giving rise to viscoelasticity. Specifically, G*¼Gþ iG00,
in which i ¼

ffiffiffiffiffiffiffi
�1
p

. The mechanical damping is tan �þ ImfG�g=RefG�g with �G as the phase
angle between the stress and strain sinusoids. Similarly, the bulk modulus K becomes a
complex quantity K*. For viscoelastic composites, the dynamic elastic-viscoelastic
correspondence principle [29,30] is applied to the solutions for elastic constants of
composites so that all elastic constants become complex quantities [31].

Figures 4–7 show the results of the composite analysis. As shown in Figures 4 and 5,
there is no effect due to the bulk modulus K1 of the inclusions on the composite shear
modulus; however, there is a strong effect on both the composite bulk modulus and
Young’s modulus. Inclusions of negative bulk modulus give rise to a reduced Young’s
modulus, or to an extreme high value of Young’s modulus, depending on the inclusion of
bulk modulus value as shown in Figure 4. Also shown is a giant peak in the extensional
mechanical damping tan �E, much larger than the assumed matrix damping tan �G¼ 0.02.
This behavior is similar to that of composites with inclusions of negative shear modulus [2].
The difference is that if G<0, the inclusions must be sufficiently small to suppress the

Figure 4. Composite Young’s modulus E (solid squares, short dash curve), mechanical damping tan �E
(triangles, solid curve) and shear modulus G (open squares, long dash curve) vs inclusion bulk modulus
(allowing negative values) in a dilute Hashin–Shtrikman composite with 5% by volume inclusions. Matrix
properties are Gm¼ 19.2 GPa, tan �G¼ 0.02, Km¼41.6 GPa, �m¼0.3, tan �K¼ 0.
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Figure 5. Composite bulk modulus K (real part) (open squares, thin curve) and Poisson’s ratio � (real part)
(solid circles, thick curve) vs inclusion bulk modulus (allowing negative values) in a dilute Hashin–Shtrikman
composite with 5% by volume inclusions. Constituent properties are as in Figure 4. Dash lines indicate values
of properties (K¼ 0 and �¼0.5,1) which govern stability. Shaded regions denote failure of strong ellipticity,
hence instability with respect to band formation.

Figure 6. Detail of anomaly. Composite Young’s modulus E0 (real part) (solid squares), mechanical damping
tan �E (triangles, thick curve) and shear modulus G0 (real part) (open squares) vs inclusion bulk modulus
(allowing negative values) in a dilute Hashin–Shtrikman composite with 5% by volume inclusions. Matrix
properties are Gm¼19.2 GPa, tan �G¼0.01, Km¼ 41.6 GPa, �m¼0.3, tan �K¼0. Dash line indicates zero
modulus.
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instability associated with the domain formation. By contrast, there is no such restriction
on the size of inclusions with K<0. For the parameters chosen, E0 and G0 are positive
throughout the range. It is also noted that KL>0 for K1>�23.6GPa. This region of
positive composite bulk modulus encompasses part of the anomaly in E and its damping
(they are both positive in this example). The material in this example is strongly elliptic in
portions of the transition region. Specifically, the region to the right in Figure 5 for which
the Poisson’s ratio is <0.5 includes the dip in E and much of the peak in its damping,
tan �E. Poisson’s ratio exceeds 1 in the left shoulder of the peak in E. Again, strong
ellipticity entails stability with respect to the band formation, a negative modulus implies
a surface constraint is required to achieve an overall stability.

A detailed view of regions of stability is shown in Figures 6 and 7. Here, the matrix
damping is reduced to tan �G¼ 0.01. Such a small damping allows Young’s modulus E
to go negative for certain values of inclusion stiffness. In this case damping becomes
singular in the vicinity of the stability boundary. Such behavior is similar to that of
a lumped system [32] with a finite number of degrees of freedom, in which a rigorous
stability analysis was conducted. In the present distributed case, there are an infinite
number of degrees of freedom, therefore a full analysis of the stability will be conducted
in future.

Negative stiffness, as considered in the present work, is a result of elastic stored energy
at equilibrium. It does not depend on resonance or other inertial effects. This is in contrast
to the negative dielectric permittivity recently reported [33] and analyzed [34], as well as to
the high permittivity analyzed [35] for resonant layered spheres. Negative dielectric prop-
erties are a consequence of the microstructural resonance; they occur over an extremely

Figure 7. Details of anomaly. Composite bulk modulus K (real part) (open squares, thin curve) and Poisson’s
ratio � (real part) (solid circles, thick curve) vs inclusion bulk modulus. Assumed constituent properties are as
in Figure 6. Dash lines indicate values of properties which govern stability of the composite as a continuum.
Shaded regions denote failure of strong ellipticity, hence instability with respect to band formation.
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narrow range of frequency. As for composites with a negative stiffness constituent,
the peaks and anomalies predicted in the present analysis and observed experimentally
[3,4] do not depend on resonance or inertial effects. The cancellation of terms of positive
and negative stiffness in the denominator of Equations (16) and (17) gives rise to the peaks
and anomalies. In resonant systems, there is a mathematically similar but physically
different cancellation of terms associated with elasticity (or with dielectric permittivity)
and with inertia. Sharp peaks in properties analyzed in dielectric composites with a
constituent of negative permittivity [36] were considered to be of concern. Indeed, in the
context of bounds, such composites may not obey some of the assumptions made in the
bounding theorems. However, Equations (16) and (17) are exact solutions for the behavior
of particular composite microstructures. The question of over what domain the solutions
are unique and stable is a subject of current investigation.

CONCLUSIONS

Composites with spherical inclusions of negative bulk moduli exhibit anomalies in the
composite bulk modulus and Young’s modulus (and in the corresponding mechanical
damping) but not in the shear modulus. Damping can tend to infinity in a region for which
the composite is globally stable without constraint. Negative bulk modulus is shown to be
possible in a prestrained lattice and in several crystalline materials.
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