- ':’@x\m%

Strongly Cosserat Elastic Lattice and Foam Materials for Enhanced Toughness 17

Strongly Cosserat Elastic Lattice and Foam
Materials for Enhanced Toughness

Cellular Polymers, 12, 17-30 (1993).

Roderic Lakes

SUMMARY

Some foams exhibit size effects and other phenomena not describable by
classical elasticity. These foams are describable by Cosserat elasticity, which is
a continuum theory with more freedom than classical elasticity. Cosserat solids
have a characteristic length which is greater than zero. Strongly Cosserat elastic
materials are considered to be those materials for which the Cosserat charac- -
teristic length is substantially greater than the structure size and for which the
coupling number is large. Such materials are predicted to exhibit superior
toughness. A mechanically isotropic lattice model is presented for the study of
foams. Ordinary open cell foams are shown to be weakly Cosserat elastic. If cell
rib properties are modified, strongly Cosserat elastic effects can occur in the
foam. Anisotropic laminate and fibrous materials can also be made to exhibit
strongly Cosserat elastic effects.

1. INTRODUCTION

Toughness is an important property of structural materials. While many
foams exhibit a substantial energy absorption to failure in compression as
a result of foam rib buckling, the tensile behaviour is typically character-
ized by abrupt failure!". Fibrous composites as well usually lack the ductility
found in metals such as mild steel. Improved toughness can be achieved
via material microstructure which allows parallel stress paths around
holes, cracks and other stress raisers. For example, in synthetic fibrous
materials, Awerbuch and Madukhar®?, reported stress concentration
factors around small holes which are lower than values predicted from
classical elasticity. Such phenomena can be understood in light of the
generalized continuum theories which allow additional degrees of free-
dom associated with the microstructure. Cosserat elasticity®, in which the
points in the continuum can rotate as well as translate, is one of the
simplest of these theories. Cosserat elasticity and the related microstruc-
ture elasticity theory have a natural characteristic length scale associated
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with the theory, in contrast with classical elasticity in which there isno such
length scale. Generalized continuum theories are therefore of interest in
connection with structured materials such as foams and composites, in
which the microstructure size is not negligibly small. Cosserat elastic
constants can be extracted from experimental measurements of size
effectsin the torsion and bending rigidity of rods. Several foams have been
demonstrated to behave as Cosserat solids by this method*®. Cosserat
elasticity predicts stress concentrations® around holes to be smaller than
expected classically. In this article, generalized continuum theories both
for analysis of foams and in the context of guiding the development of new
foam material microstructures with superior toughness are considered.

2. ISOTROPIC COSSERAT SOLIDS

In the isotropic Cosserat solid there are six elastic constants, in contrast
to the classical elastic solid in which there are two. Several combinations
of Cosserat elastic constants have dimensions of length and are referred
to as characteristic lengths. The constitutive equations for a linear
isotropic Cosserat elastic solid ” also known as a micropolar solid @ are:

o,=Mhe_ O, + (2u+xe, +xe, (r -4 ) (1)

mk] =a ¢r,r 6}4 + B¢k,| + Y¢l,k (2)

The usual summation convention for repeated indices is used through-
out and the comma denotes differentiation with respect to spatial
coordinates. o, is the force stress, which is a symmetric tensor in classical
elasticity but it is asymmetric here. m, is the couple stress or moment per
unit area, ¢, = (uk,I + u,vk)/ 2 is the small strain, u, is the displacement, and
g, is the permutation symbol. The micro-rotation ¢, in Cosserat elasticity
is kinematically distinct from the macro-rotation r,= (eklmumyl)/ 2. In three
dimensions, the isotropic Cosserat elastic solid requires six elastic con-
stants A, 4, a, B, v, and « for its description. The following technical
constants derived from them are beneficial in terms of physical insight.
These were discussed by Eringen® and Gauthier and Jahsman®:

(Pu+x)(BA+2u+x)/(2A+2u+k)

Young’s modulus E

Shear modulus G = (2u+x)/2
Poisson’s ratio v = M(2A+2u+x)
Characteristic length for torsion | = [(B+y)/(2u+x)]"/2

it

[v/2{2p+x)]"?
[x/2(u+x)]"2 (dimensionless) and
(B+y)/(a+p+y) (dimensionless)

Characteristic length for bending |,
Coupling number N
Polar ratio W




Strongly Cosserat Elastic Lattice and Foam Materials for Enhanced Toughness 19

The Cosserat characteristic lengths govern the size scale at which
deviations from classical elasticity are observed. For example, size effects
occur in the bending and torsion of rods?; the rigidity of such rods
becomes significantly larger than that of a classical rod when the rod
diameter is about ten times the characteristic length. The coupling
number governs the magnitude of the Cosserat elastic effects®.

The characteristic lengths of cellular and composite materials can be
obtained from microstructural analysis, in terms of the material properties
of the constituents. The Cosserat characteristic lengths are predicted to
be of the order of the size of the structural elements for several structures
such as two dimensional lattices!?. In some materials such as particle
reinforced composites, the characteristic lengths are predicted to be
zero™ and have been experimentally demonstrated to be zero*? in such
materials. Experimental work on foams discloses characteristic lengths
somewhat larger than the foam cells, as recently reviewed®.

We define strongly Cosserat elastic materials to be those materials for
which the Cosserat characteristic lengths are substantially greater than the
structure size and for which the coupling number N is large (its range is
from zero to unity). In the ‘usual’ case in which | is small, comparable to
the size of structural elements in a foam or composite, the effect of the
Cosserat elasticity will manifest itself in the distribution of stress near crack
tips'? and in the reduction of stress concentration around small holes®.
The effect in this case will be to increase the toughness®?. In strongly
Cosserat elastic materials, dramatic increases in toughness are antici-
pated, and reduction of stress concentrations associated with holes and
other inhomogeneities much larger than the structure size.

3. LATTICES AS STRONGLY COSSERAT
ELASTIC MATERIALS

3.1 Mechanically isotropic lattices

We consider the lattice model of Tauchert® with the aim of determining
the attainable, strength of Cosserat elastic effects, given modifications of
the rib structure. If we choose curved ribs, they deform principally by
bending or twisting, and the model approximates the behaviour of an
open cell foam. In this model, shown in Figure 1, mass points in a
structurally cubic lattice are connected by ribs (bars) capable of supporting
axial, shear, flexural, and torsion loads. Each lattice point can rotate as
well as translate, corresponding to the kinematical freedom of the points
in the Cosserat continuum representation.
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Figure 1 Lattice structure with ribs connecting nearest neighbour points and
next nearest neighbour points. Ribs can be straight or cured
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b, = 1261 /L1 2
< Gi‘Jij L, and
d,=4E/L

in which Eij is Young’s modulus
Gij is the shear modulus
Ai). is the cross sectional area
I is the moment of inertia
; 1s the polar moment of inertia of a bar denoted
by indices (ij),
and L is the lattice spacing.

Bars with i=j connect nearest nei
symmetry axes, and those with i=j connect next nearest neighbours.

The lattice is structurally cubic, but mechanically other symmetries such

as orthotropy or isotropy can be achieved by choice of the properties of

ghbours along the orthogonal cubic

solutions of boundary value problems as well as experimental results are
available for the isotropic solids; it is possible to experimentally
determine™9 all six elastic constants for the isotropic Cosserat solid. To

calculate the Cosserat elastic constants in the isotropic lattice, we
compare the orthotropic equations of motion and constitutive relations of
Tauchert!3 in terms of structural parameters term by term with the
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isotropic continuum constitutive equations of Eringen®. For isotropy we
must have:

and

and similarly for the b, c, and d coefficients. Additional conditions for
isotropy obtained by comparing the structural and continuum equations
are that:

= a,,+b,, b,

, +dy/48,=a,

I

1
2

al 1 a 1
c,=C
bll IDl
For the mechanically isotropic lattice, a hydrostatic deformation gives rise
to rib axial deformation without bending or torsion. The elastic constants
for isotropic material are obtained below from the anisotropic relations of

Tauchert '3 in terms of the rib extension coefficients a, rib bend
coefficients b and d, and rib twist coefficients c,

Shear modulus:

G= alZ + bll/z + b12 (3)
Poisson’s ratio:
v= (alz-blz)/[4a12+bu} (4)
Coupling number:
N = [(b,,+ 4b,,)/(2a,, +2b ,+ 6b )]/ )
Characteristic length, bending:
= llc,, + d,;/4 + 3d,,/4)/(4a,,+2b +4b ,)]/2 6)
Characteristic length, torsion:
It = [(2c,, +d,,/4 +d,,/2)/(a,, +b,,/2 + b )]"? (7)
Polar ratio:
V¥ = (2c,, +d,;/4 +d,,/2)/(3c;, + d,,/4 + d,) 8)

For lattices containing slender straight ribs of diameter d, b/a = 3d?/
41 2; the assumed slenderness implies b/a « 1. The classical shear modulus
is then governed mostly by the rib stiffness in extension, unlike most open
cell foams. Moreover, v = 0.25. The Cosserat characteristic lengths are




represent components of the couple stress. However, rib twisting differs

22 Strongly Cosserat Elastic Lattice and Foam Materials for Enhanced Toughness

much smaller than the lattice spacing and N « I; such a lattice is nearly
classical. For ribs which are solid thick bars of length three times the
diameter (if they were any thicker, the structure would no longer be a
lattice) we obtain v = 0.24, N = 0.4, l,=0.08L,1 =0.15L, and ¥= 0.6
(the last equality is true for bars made of any solid straight ribs). This is still
weakly Cosserat elastic: the characteristic lengths are smaller than the
structure size, and the coupling number is not very large.

We may envisage a lattice of curved ribs; as discussed below, this model |
is representative of open cell foams. We compare the extensional stiffness
of a straight rod of circular cross section of diameter d with that of a rod |
cured into a half circle of radius R (14) and find the ratio of the extensional é
rigidities to be (d/R)?/,, so that with L = 2R, we have b/a=1.5. For this |
case, v =-0.18, N = 0.7, J, =0.21L, and I, = 0.38L. The results are |
essentially independent of rib aspect ratio.. The Cosserat effects are now
larger but the characteristic lengths are still smaller than the structure size.
Even if we could achieve b » a, the ,I’s would still be less than the lattice |
spacing L. . }

3.2 Ways to achieve strong Cosserat effects

The characteristic lengths can be made much larger than the lattice size
if the rib torsion coefficients ¢ are made large compared with the rib
extensional coefficients a and the bend coefficients b and d as seen in |
Equation 6 and 7. Structures of this type give rise to large characteristic
lengths, but increasing the rib torsion rigidity c alone will not allow N ~1,
as seen in Equation 5. The unique role of rib torsion is at first surprising
since the spatial average of bending and twisting moments upon ribs

structurally from rib bending in that a uniform axial or shear (but not
hydrostatic) deformation of the lattice causes rib extension and bending
but not twisting. The bending couples are of alternating sign so the couple
stress vanishes for uniform deformation, in agreement with the con-
tinuum view®. The modulus for uniform deformation is relevant here
since it appears in the denominator in the definition of the characteristic
lengths.

Ribs which are much more rigid in torsion than in extension or bending
can be made in the form of corrugated tubules, as shown in Figure 2a.
Alternatively, the ribs can be made of negative Poisson’s ratio material 19,
so that the rib shear modulus can substantially exceed the Young's
modulus. Another possibility for the achievement of large characteristic
lengths is to make the rib axial stiffness negative, a possibility which was
recognized by Berglund™®. Such a rib would be unstable in isolation, but
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Figure 2 Cell ribs which give rise to strongly Cosserat elastic foams.
(a) Cell rib as a corrugated tubule is stiff in torsion but compliant in
compression and bending
(b) Cell rib containing a tied arch; flexible portion is shown asindicated(**). The
configuration shown is stable. Under sufficient compression the arch exhibits
another equilibrium position which is unstable and which corresponds to
negative compressional stiffness.

A macroscepically homogeneous rib with a negative Poisson's ratio also
will give rise to strongly Cosserat elastic foams

D ;

as part of a lattice, stability would follow from satisfaction of the continuum
bounds {constitutive inequalities)®:

G=0
-1=svs05
leO.ltzO
0=<sN=<1
O0s¥<15

These bounds were derived from the requirement of positive definite-
ness of the strain energy as in classical elasticity. Ribs of negative axial
stiffness can be made of a subcell containing spring elements with
prestraini’®, Another possibility is a cell rib containing a tied arch, shown
in Figure 2b. The flexible portion is shown as indicated(**). The configu-
ration shown is stable. Under sufficient compression the arch exhibits
another equilibrium position which is unstable and which corresponds to
negative compressional stiffness?). The cell ribs still should have a positive
bend stiffness, so the rib itself should be composite in nature, e.g. we may
envisage a segment of negative stiffness surrounded by structure of
positive stiffness offset from the neutral axis of bending.
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4. COMPARISON OF LATTICES WITH FOAMS

The mechanics of open cell foam materials is governed by the bending of
the ribs in contrast to the above lattices of straight ribs in which the rib
extensional stiffness dominates the stiffness. As for the classical elastic
moduli, the above lattice model assuming curved ribs gjves:

Gfoam/ Gsolid x (pfoam/ psohd)z

in which p refers to density and solid refers to the solid from which the
foam ribs is made. This is in agreement with experiment and with
elementary theory for open cell foams and in contrast to the behaviour
of a lattice of straight ribs in which the density ratio is raised to the first
power rather than the second:

Gfoam/ Gsolid « (pfoam/ psolid)

The Poisson’s ratio of conventional foams is about +0.3 and for a lattice
of straight ribs it is +0.25. The structure of conventional foam cells is
tetrakaidecahedral, which differs considerably from the idealized cubical
cells of the lattices. In negative Poisson’s ratio polymeric foams®9, v is as
small as -0.7, compared with -0.18 in lattices of curved semicircular ribs.
The effect of rib curvature in the lattice model is to reduce the Poisson’s
ratio. The actual ribs in re-entrant foam can be convoluted, with more
Curvature than the semicircle model.

As for Cosserat elasticity in foams, the experimental characteristic
lengths exceed the foam cell size in conventional foams of various density,
mostly closed cell“S and in open cell negative Poisson’s ratio foams®. The
lattice model, which is open cell, does not account for these observations,
even if curved ribs are allowed. In dense closed cell foam, lt>lb was
observed experimentally; in low density closed cell foam, ] < l; inthe open
cell lattice model, L, >l,. Simple foam models® consider rib bending to
predict classical elastic behaviour; they do not deal with rib twist or
Cosserat elasticity. As for closed cell conventional foams, the lattice model

Nevertheless the lattice mode] is suggestive in terms of the role of curved
ribs. Foams of conventional structure, although they exhibit | >d_, are
experimentally not strongly Cosserat elastic solids since the characteristic
lengths are not dramatically larger than the cel| size, and Nis in the range
0.2 t0 0.3, well below its upper bound.
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The negative Poisson’s ratio foams®® differ structurally from the
conventional ones in that the cell ribs of the former are sharply curved,
even convoluted. The curved and convoluted ribs in the negative Poisson’s
ratio foam structure suggests, in the context of the lattice model, an
intensification of the Cosserat elastic effects; however the lattice model
does not incorporate the 're-entrant' aspect of the cell structure. Further
experimental characterization of these materials is in order.

We cannot exclude the possibility that more general continuum
theories, such as that of Mindlin® may apply to cellular materials. The
Mindlin microstructure theory makes use of 18 elastic constants in the
isotropic case. It is difficult to apply this theory to experimental results
since the relevant boundary value problems have not been solved. Non-
local elasticity29 js another possibility, however, again the boundary
value problems for torsion and bending have not been solved.

5. ANISOTROPIC STRONGLY COSSERAT
ELASTIC MATERIALS

Laminates and fibrous materials are considered here for comparison with
foams. We make use of the anisotropic generalized continuum analysis of
laminates®", and we proceed in a way similar to the above with the aim
of achieving strongly Cosserat elastic effects. The laminate, with some
change in notation from ref. (2 1), has stiff layers of thickness h, shear
modulus G, Poisson’s ratio v, and volume fraction V,, and has compliant
layers of shear modulus G,, and volume fraction I-V,. The Cosserat
characteristic length is given by

1 =V3h{V,G/6G, (I-v,)]*2 (9)

The original results @ were given in terms of ‘couple stress theory’
which is a special case of Cosserat elasticity correspondingto N = 1. The
characteristic lengths are defined somewhat differently in these theories,
so that the Cosserat length for torsion is V3 times the couple stress length.

There are two principal stiffnesses in this anisotropic material, corre-
sponding to orthogonal direction of applied load

Gy = GV, + G_(1- V) (10)

G = [V/G, +V_/G |1 = [V, +(G/G )1 - V)1t (11)
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The Cosserat x is given by x = GV,, so there are two coupling numbers
Nyog= [GV/(2G,, +G V]2 (12)
NReuss= [vaf/(zGreuss+vaf)] vz (13)

To achieve strongly Cosserat elastic effects in the laminate,
let G/G_=» « and V,-> 1 in Equation 9 which gives I/h = « so that the
characteristic length becomes much larger than the structure size. V1
in Equation 10 gives a Voigt stiffness approaching that of the stiff layers
so that N, 2 0-577 which is substantial but still less than the upper
bound of 1. The laminate can be made as stiff in the Reuss direction as
the stiff layers as well by requiring (G/G_)M-V) = 0in Equation 11, which
can be achieved simultaneously with the above limiting procedure. Then
Nioe 2 0 577. Such a laminate is regarded as strongly Cosserat elastic. |
The coupling number for the Reuss direction can be made to approach
1 only if stiffness in that direction is sacrificed as seen in Equation 11 and.
13. A drawback of the laminate structure is that if tensile stress is applied
perpendicular to the laminae, all of the stress passes through the soft
matrix phase. Even if this phase is made very thin to maintain the stiffness
of the laminate, the laminate strength for this direction of loading is likely
to be low. Strength could be improved by using a dovetail structure, but
that would complicate the analysis.

The theory of fibrous composites by Hlavacek®? incorporates the
freedom of a Mindlin type!'® generalized continuum, which includes the
Cosserat and classical continua as special cases. We consider here the
Cosserat elastic constants only. Analysis of the results of this theory
discloses the torsional characteristic length | can be made arbitrarily large
compared with the fibres if the fibres are much stiffer than the matrix. If,
in addition we allow the matrix volume fraction to tend to zero, the results
for torsion about the fibre axis are G omposic”’ O, > 4. and N=> 0.577. The
stiffness result is considered unphysical since we would expect Gcomposite -2
G, as the fraction of matrix is reduced to zero. However since the model
assumes circular fibres for which the volume fraction can never approach
unity, difficulties in limiting procedures are not surprising.

To summarize, if the matrix material between laminae (or between
fibres) is made very soft and the matrix layers made very thin, a
characteristic length can be made much larger than the structural
elements, resulting in strongly Cosserat elastic anisotropic materials. In
the case of laminates it is possible to achieve this with little sacrifice in
stiffness.
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6. DISCUSSION

The lattice model is of interest in part because it can be made structurally
isotropic, which facilitates comparison with experiments on foams and
aids in understanding the mechanics. Lattice type models have also been
considered™-23 in which the authors pointed out that the Cosserat
characteristic length cannot substantially exceed the structure size unless
the torsion rigidity of a rib can be decoupled from the axia] rigidity of the
same rib, a situation regarded as impossible. The present study offers just
that kind of decoupling which permits strongly Cosserat elastic solids.
Physical realization of such a solid is not straightforward, since the foam
must either be made from unusual materials or with an unusual rib
structure. Physically, Cosserat elastic effects arise as a result of bending
or twisting of structural elements within a material. Such effects certainly
occur in foams. In foams there is, however a competing effect in which
cells at a free surface are incomplete and therefore carry little load®¥, This
surface effect reduces the rigidity of thin specimens of foam®¥, leading to
the opposite kind of size effect as that seen in Cosserat solids. Which effect
predominates will depend on details of the cell structure; the issue is as yet
not well understood.

In the lattice or foam type strongly Cosserat elastic solids considered
here, there is a tradeoff between the Cosserat constants | and N and the
classical stiffness E: large | and N is associated with a reduced value of E.
This situation is reminiscent of the difficulty of simultaneously achieving
high stiffness, strength and toughness in known materials. This tradeoff
might be escaped via non-linearly Cosserat elastic materials in which the
Cosserat type effects do not manifest themselves until a critical stress is
reached. Alternatively, attention could be directed to applications which
require a compliant but tough foam.

As for laminates and fibrous solids, it is easy to achieve strongly
Cosserat elastic effects, however the interpretation of the elastic constants
and of the effect upon the behaviour of the material is not as straightfor-
ward as in the isotropic case. In a structural view, laminated or fibrous
microstructures with very compliant matrix materials are also seen to be
beneficial in achieving high toughness, as articulated by Cook and
Gordon® in the .context of arresting propagating cracks. A structural
-perspective was taken by Chiang®? who analytically demonstrated that for
typical fibrous composites, the use of homogeneous classical elasticity in
calculating stress intensity factors for cracks is warranted only if the crack
size is at least three orders of magnitude larger than the fibre diameter. In
the Cosserat view, improved toughness results from amelioration of stress
concentration factors around holes and flaws, so that crack initiation is
prevented.




7. CONCLUSION

1. Open cell foams are predicted to be weakly Cosserat elastic, even if
the cell ribs are substantially curved.

2. Isotropic strongly Cosserat elastic materials can be made from
lattices or open cell foams which have ribs which (i) are corrugated
tubules, (ii) have a negative Poisson’s ratio, or (iii) contain elements.
of negative stiffness.

3. Anisotropic strongly Cosserat elastic materials can be made in
fibrous or laminated geometries provided the ratio between stiffnesses
of the constituents is large.
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