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Abstract— The contributions of thermoelastic coupling and fluid motions to viscoelastic response in bone are
calculated, using the theories of Zener and Rusch, respectively. Fluid motion and homogeneous

thermoelasticity produce mechanical losses which

are size dependent. Inhomogeneous thermoelastic

coupling results in thermal currents between regions of different stiffness, such as osteons and lamellae, and
around voids. Losses of this type display no size effect. Fluid motion, homogeneous thermoelasticity, and
inhomogeneous thermoelasticity resulting from stiffness variations, yield losses which are significant enough
to be measurable. An expression is derived for the contribution of piezoelectric-like coupling to the
mechanical loss. This loss is calculated from published data, and for dry bone it is negligibly small. The role of
inhomogeneous deformation and molecular modes in collagen as viscoelastic mechanisms is considered and

experimental evidence is discussed.

INTRODUCTION

Compact bone has proven to be a highly complex
material. It is inhomogeneous, anisotropic (Lang,
1970; Yoon and Katz, 1976), viscoelastic {sec e.g.
Rauber, 1876 ; Lakes et al., 1979) and exhibits detailed
structure on all levels of scale (see e.g. Hancox, 1972).
The complex structure of bone has suggested to many
investigators that an understanding of the physical
properties, and in particular the mechanical proper-
ties, of bone can be arrived at via examination of its
structure and the (markedly different) properties of its
constituents.

When a viscoelastic solid is subjected to mechanical
strain, part of the strain-energy is converted to other
forms and ultimately degraded into heat. What hap-
pens to this energy in living bones can be of consider-
able biological importance. For example, bone is
known to remodel itself in response to mechanical
stress in such a way as to more effectively support the
stress (Wolff’s law). A variety of mechanisms have been
proposed to account for this activity: (1) lamellar
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+ This paper is based on part of a dissertation submitted by
R. S. Lakes, while an N.LLH. Predoctoral Trainee, in partial
fulfillment of the requirements for the Ph.D. in Physics at
Rensselaer Polytechnic Institute.

1 Viscoelastic effects are here taken to include any process
which results in energy dissipation in mechanical defor-
mation at small strains, and which does not permanently alter
the structure of the material, regardless of cause. Several of the
effects considered here depend on specimen size and are not
included in the traditional study of viscoelasticity theory;
nevertheless they result in macroscopically observable damp-
ing and hence must be included in the analysis of bone’s
behavior.
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motions; impingement on osteocyte processes
(Tischendorf, 1951); (2) stress-induced fluid motion,
resulting in improved nutrition of osteocytes
(Mouradian, 1973; Renton, 1970) (3) Stimulation of
bone cells by means of stress generated potentials
(Bassett, 1964, 1965). Currently, the third of these is
now considered by many as the possible origin of
Wolff’s law activity. In all the above processes,
mechanical energy is transformed into other forms
before being dissipated. An investigation of these and
other viscoelastic mechanisms, in particular of their
frequency dependence, can elucidate the role of strain
energy dissipation in living tissues.

Among the large number of physical processes
which are capable of causing viscoelastic] effects, the
following shall be considered in the present study:
(1) Thermoelastic coupling

a. Homogeneous effect
b. Inhomogeneous effect;
(2) Piezoelectric-like coupling;
(3) Motion of fluid in canals in bone;
(4) Inhomogeneous deformation
a. Motion of osteons at cement lines
b. Motion of lamellae in osteons and inter-
stitial lamellae
c. Motion of fibers within a lamella;
{5) Molecular modes in collagen.

The mechanical damping resulting from the first
three of these can be evaluated quantitatively. This is
done in the following analysis.

RELAXATION DUE TO THERMOELASTICITY

Homogeneous effect
The stiffness measured for a solid is dependent upon

9
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whether the measurement is performed under adia-
batic or isothermal conditions. If the observation is
done at frequencies at which the solid behaves neither
adiabatically nor isothermally, a frequency depen-
dence of the stiffness will be observed, as well as
mechanical damping resulting from the irreversible
flow of heat between the specimen and its (isothermal)
environment. The adiabatic and isothermal com-
pliance tensors S5, and Sf,, respectively, are related
by the following (Nye, 1957):
T

= 00— 1

s T _
St — Sija = c

where a is the thermal expansion tensor, T the absolute
temperature and C” the heat capacity per unit volume
at constant stress.

Observe that in a principal coordinate system in
which « is diagonal, the difference between the adia-
batic and isothermal shear compliances (such as S, 3,5)
is zero, so that for shear deformation in such a system,
there is no relaxation due to homogeneous
thermoelasticity.

For a hypothetical experiment done in uniaxial
tension or compression, in which the material axes of
the specimen are oriented so that S,335 can be
measured, the compliances differ. The frequencies at
which the maximum energy loss occurs depend on the
geometry:

wt,(ijk!
tan ;@) = Ay Z,F, 1+w+1{,f(;kl)
with
s F, =1 (2)

and A.'jkzz(sisjkl“sirjkl)/siju, and F, and 1,
are solutions of an eigenvalue problem for the
geometry in question (Zener, 1938). For a circular

cylinder of radius r in compression along the long axis,
2

C .
Zener has obtained F,=4/q2, 1, = % E”, where C, is
q

the specific heat, K the thermal conductivity, and g, the
n’th zero of the zero’th Bessel Function J,. For a bone
specimen { in. in diameter at body temperature, using
the values for S, o, and K compiled in Table 1, and the
specific heat for hydroxyapatite in the absence of a
value for bone, the following is obtained:

Table 2. Homogeneous thermoelastic modes

n 4y 7,(sec) F, F,A v,(Hz)
1 2.40 12 0.693 0.0014 0.013
2 5.520 23 0.131 0.0003 0.069
3 8.654 0.94 0.051 0.0001 0.169

Note that F,A represents the peak value of tan é due to
each mode and v, = 1/2=nt,, the frequency at which
that peak occurs.

While these values of tan § in tension or compres-
sion are real in the sense that they represent an actual
energy loss, the relaxation is not intrinsic, in that the
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characteristic times 7, depend on the size of the
specimen and their distribution depends on the shape
of the specimen.

Inhomogeneous effect

Stress inhomogeneities in a solid which is subjected
to dynamic loading give rise to fluctuations in tem-
perature and therefore to heat flow between the
inhomogeneities. This heat flow represents an irrever-
sible conversion of mechanical energy to heat.

By means of thermodynamic arguments, it is
possible to show that the loss tangent due to in-
homogeneous thermoelastic relaxation is given by the
following (Zener, 1938):

2 Vv

B*T
tan § = —— R L, Fy ———;
C,X vi +v

v

LF =1, (3

where f is the volume coefficient of thermal expansion,
T the (absolute) temperature, C, the heat capacity at
constant volume per unit volume, and R is the fraction
of strain-energy associated with dilatation. The char-
acteristic frequencies v, and weighting coefficients F,
are obtained from analysis of the specific geometry in
question.

The quantity A = p2T/C,X represents an upper
bound for the loss in a given material, since R < 1. For
compact bone, this expression may be evaluated using
the data in Table 1 and recognizing that the volume
expansion coefficient § is given in terms of the linear
expansion coefficients « by f =o; + o, + a3. The
compressibility may be expressed in terms of the elastic
constants by X = §;;4; + 83220 + S3333 + 2(S1122
+ S,333 + Sii33) The heat capacity used in the
calculation is again that of hydroxyapatite in the
absence of a value for whole bone. For bone at body
temperature, then, A = 8.1 x 1073,

In order to evaluate the quantity R, a stress analysis
must be performed on the inhomogeneities in ques-
tion. Zener (1938) obtains values for R corresponding
to inhomogeneous stress in the randomly oriented,
anisotropic, cubic crystals of a polycrystalline metal.
The largest value for R so obtained was 0.065 for lead.
Now, in bone, the variation in stiffness among osteons
results from differences in structure as well as degree of
calcification. Ascenzi and Bonucci (1966) have obser-
ved differences as great as a factor of 2 in the Young’s
modulus of different types of osteons. This greatly
exceeds the variation in stiffness of the crystallites of
lead due to random orientation. Therefore, the value of
R for bone is likely to be significantly greater than that
for lead, but it could not be expected to attain the
upper bound of 1 corresponding to pure local dila-
tation. To calculate R explicitly for bone, the aniso-
tropy of the different types of osteons and lamellae must
be known. Lacking this information, only an upper
bound on the relaxation strength, corresponding to
R =1, can be given.

The characteristic frequency v, of these thermoelas-
tic losses, that is, the frequency at which tand is
maximum, depends only on the thermal relaxation
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time for heat flow between the inhomogeneities (of size
L)yin question. v, is given by v, = k/L*C,, where k is the
thermal conductivity, C, the heat capacity and L is the

thermal path length.
The presence of cavities in a solid also gives rise

to a relaxation of thermoelastic origin,t as a result
of inhomogeneous stress distributions around the
cavities. For spherical cavities in an isotropic solid
subjected to shear

10

R=——VP(N
764 TN

2
P(N) = (1 —2N)<1 —%ﬁ>

V is the volume fraction of cavities and N is Poisson’s
ratio (Zener, 1938). For compact bone, N = 0.34, so
that R = 4 - 1072 - V. Calculated values for R and for
the maximum value of tan § are presented in Table 3.

The distribution of frequencies associated with this
relaxation is given by

where

18x2
6 _2x* 4+ 9x? + 81

F(x) =

where the sum

ViV
W F
k kvz +_v

in equation (3) is replaced by the integral

* v(x)v
L PO o &

(x) = « ?
=502 )

where r is the cavity radius.

It should be noted that, although anisotropy has
been neglected for the case of cavities (since the local
anisotropy is not known), the peak value of tan § could
in no case exceed V-A. The actual lacunae are
ellipsoidal, and the actual osteons are cylindrical in
shape, therefore the assumption of spherical cavities
leads to an approximate result. In view of the smallness
of the predicted loss, more sophisticated modelling
was not undertaken. Viscoelastic response due to
stiffness variations, in contrast, could be large enough
to detect, if the value of R approached the theoretical
upper bound of 1. An explicit calculation of R would be
very complex and would require micromechanical
data which are presently unavailable.

The ratio of the stiffness of apatite to that of collagen
is at least 100, considerably greater than the stiffness
variation among osteons. Due to the small size of the
apatite crystallites, the characteristic frequency of the

t This comes from the transfer of heat generated by the
coupling described above. This relaxation must be distin-
guished from that resulting from redistribution of stresses
among viscoelastic phases near a stress concentration.
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inhomogeneous thermoelastic relaxation is well above
the range of physiologic interest and therefore is not
included here.

Calculated mechanical losses due to inhomo-
geneous thermoelastic effects show no dependence on
the size or shape of the specimen. This will be true
provided that the smallest dimension of the specimen
is much larger than any of the inhomogeneities
considered.

RELAXATION DUE TO STRESS-GENERATED
POTENTIALS

The stiffness of an elastic crystal is increased by the
presence of piezoelectric coupling. By the use of
thermodynamic arguments (Nye, 1957), it is possible
to show that the difference between the compliance at
constant electric displacement S ;s and the compliance
at constant electric field S5, is given by

ljkl ijkl“' '—dm]dmkl(k ) 1’ (4)

where d is the piezoelectric modulus tensor, k is the
dielectric tensor at constant stress, and the tempera-
ture is assumed to be constant.

If the material in question is semiconducting, or
exhibits dielectric relaxation, and is subjected to a
transient (step-function) stress, the stress generated
polarization will be neutralized after a period of time.
Electrical energy will have been dissipated, resulting in
a relaxation of the mechanical stress.

Mechanical losses induced by stress-generated po-
tentials, as well as the piezoelectric-like stiffening
referred to above, may be expected to depend upon the
electrical boundary conditions imposed on the speci-
men. Therefore, consider a specimen in the shape of a
thin plate, oriented so that the 1 axis is perpendicular to
its surface. Now the constitutive equation for a linear
piezoelectric-like solid is

Dy = dyij04; + KymEim- (5)

For lossy materials, the coefficients d and k may be
considered to be complex:

d*=d' —id"; k*=k —ik". 6)

Now from Gauss’s law, the boundary condition on the
electric displacement D is Dirermall .. plormall — 5
where X, is the density of free charge on the surface.
Since for the geometry in question DIor™al = (,
Dlrermall — 5 .. The current density J, = (d/dt)Z;,..,
is related to the electric field by the dynamic con-
ductivity ¢%%:  J, =g,.E,, However, since
Gum = kit - @, One is left with iDo™ll = k7 oE_ or
D, = 1k 1nE,. Ifitis assumed that k is diagonal in the
chosen coordinate system, then E; = (i/k],)D,.

As shown in Appendix A, the mechanical loss due
to weak piezoelectric coupling is given by equation
(A-12):

veen  d123 — di33
Atan 6¥5sh = —~——""tan 6%, (7)

‘ ’

1122323

where tan 6{) is the dielectric loss tangent.
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Table 3. Inhomogeneities in bone and associated thermoelastic losses

Type of
inhomogeneity, Dimension,
cavity r(um) Vv 0.004 V RA=tan é max v,(Hz) 7,(sec)

lacunae 8 0.008 32x107°% 26x1077 18 0.009
Haversian Canals 35 0.05 20x 107 1.6x107¢ 1.2 0.13
canaliculi 0.015 60x107% 49x1077

Stiffness d(um) A v,(Hz) 7,(sec)
osteons 300 0.063 2.53
osteons 200 0.0081 0.14 1.14
lamellae 20 044 0.35

For ‘dry’ bone, the piezoelectric-like coefficients for
shear, d, ,3, d, 3, greatly exceed those for compression.
Using the published values for the properties of
compact bone, which are collected in Table 3, the
piezoelectric-like contribution to the loss becomes
Atand,s,; = 5 x 1078 The contribution A tan &, 3,4
is somewhat larger: 1.2 x 1077, Thisis far too small to
be resolved above other losses, typically of the order
1072 in bone ; however, it must be recognized that the
electrical properties of bone are dependent on fre-
quency, humidity and temperature. Values for the
complex piezoelectric-like coefficients as functions of
frequency have only just recently appeared in the
literature (Bur, 1976 ; Pfeiffer, 1977).

Relaxation due to an inhomogeneous piezoelectric-
like effect, in which stress-related polarizations are
generated and annihilated locally, is conceivable, given
the structure of bone. No experimental data on such an
effect appear to be available.

RELAXATION DUE TO FLUID MOTION

A sizeable fraction of the volume of even compact
bone consists of voids. A dissipation of mechanical
energy can result from the motion of fluids in con-
nected voids, if the strain applied produces a volume
change and if the specimen has a free surface. Strain-
induced fluid-motion has been suggested as a mech-
anism for certain elements of the ‘piezoelectric-like’
tensor of wet bone (Anderson and Eriksson, 1970) and
for facilitated transport of nutrients to, and wastes
from, osteocytes.

An explicit calculation of the contribution of fluid-
motion to the viscoelastic response of porous materials
(foams) has been done by Rusch (1965). The following
expression is obtained for the loss tangent for ten-
sion/compression along the 3 axis of a solid containing
pores filled with an incompressible fluid of viscosity #:

tan 8 = {do[1 + B*(,/8)"] + (v/12)}/

[1+ B(/8) + B0/8)'], (B)
where f = 2(E,/E ) (h/r)%,y, = onr?/@EK, dy is tan &
for the matrix alone, h and r are the length and radius,
respectively, of the cylindrical specimen, E, and E, the

Young’s modulus in the longitudinal and transverse
directions, respectively, of the matrix alone (no fiuid in
pores), ¢ the volume fraction of pores and K the
permeability of the specimen. K can be taken as a
constant, provided the flow velocity of fluid is small
and the channels not too irregular. The small-strain
assumption used in the analysis is satisfied in the
regime of viscoelastic behavior in bone. The constant
K may be expressed approximately as
K = {(C/t)(¢/S)?, where C is a constant depending on
the tube cross section, lying between 0.5 and 0.6 for
circular, square and triangular cross section; t is the
tortuosity or flow path length divided by total path
length and S is the surface area of interconnecting
pores divided by their volume. For an array of parallel
cylindrical tubes of diameter d, K = d*$?/32; how-
ever, for bone, Haversian canals and Volksmann’s

canals run at right angles, so we take 7 = \/5, whence
K = d*¢?/32,/2.

The calculation of the fluid-flow contribution to
tan J for bone is done using the following values:

¢ =01
E; =274 x 10‘°Nt/m2}(from compliances measured
E, = 1.88 x 10!*Nt/m?j by Yoon and Katz, 1976)

d=20um=2x 10"5m

h = lin. = 2.54 x 10~ ? m (typical specimen

dimensions)

r=1/16in. = 1.59 x 10*m

d, =001

n = 102 poise = 10~ 3 MKS (water).

The results of this calculation are shown in Fig. 1. It
should be noted that the loss-tangent due to this
mechanism would peak at 1000 Hz if the anisotropy in
porosity not considered. Since the fluid-flow
permeability tensor for bone has not, to the authors’
knowledge, been published, several longitudinal sec-
tions of bovine bone were studied under the micro-
scope. The number of channels piercing these sections
(radial direction) were counted and their average size
estimated, yielding a permeability of 3.16 x 107 ¢ m?
in the transverse (radial) direction. This value was used
in the calculation.

The problem of fluid-flow damping in bone has been

wars
wiic
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Fig. 1. Contributions of several relaxation mechanisms to the loss tangent of cortical
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bone: A.

Homogeneous thermoelastic effect; B. Inhomogeneous thermoelastic effect; C. Fluid flow effect; D.
Piezoelectric effect.

approached by Mouradian (1973) who has, using
Rusch’s theory, calculated the loss due to a compress-
ible fluid using the bulk modulus of air, rather than
that of water. Moreover, Mouradian did not note the
dependence of the fluid-flow loss on specimen size and
shape. Water has been treated as incompressible in the
present study, since its compressibility is less than one-
tenth that of dry bone.

The preceding arguments depend on the assumption
that a volume change occurs in the solid portion of the
bone. For the case of torsion about the symmetry axis
of an axisymmetric solid, there is no overall volume
change and hence no energy dissipation due to this
type of fluid motion. Local volume changes due to the
inhomogeneity of bone may cause some damping, but
this would be difficult to assess; the magnitudes of
tan d calculated for tension/compression would repre-
sent an upper bound. Loss due to the shear of water in
the absence of bulk transport is entirely negligible,
since the shear stress in water does not approach that
in bone until a frequency of 1012 Hz is reached.

INHOMOGENEOUS DEFORMATION

'Microscopic examination of bone fracture surfaces
has revealed that slowly moving cracks, in particular,
tend to propagate along the cementing lines (Pie-
karski, 1970). This observation has led some authors to
postulate that the ‘cement-line’ material, primarily
composed of protein-polysaccharides, behaves as a
‘zone of weakness’ and acts to retard some types of
fracture and accelerate others. If this material exhibits
a large compliance or is in fact viscous at small
macroscopic stresses, then motion along these in-
terfaces can result in large mechanical relaxations.

In polycrystalline metals, a similar mechanism,
slippage along the grain boundaries, can be shown to
cause a relaxation of about 409 of the initial stressin a

stress relaxation experiment (Zener, 1941). The central
assumptions in this analysis were: (i) grains are
modelled as interlocking polyhedra; (ii) the boun-
daries are viscous, hence the shear stress across them
vanishes in the relaxed state. Experimentally, it is
observed that such large, recoverable relaxations do
occur in metals (K€, 1947); at room temperature the
characteristic time can be many days.

The complex geometry of the microstructure of
bone, including branchings and interconnections of
osteons, has thus far precluded any attempt to
theoretically evaluate the relaxation strength as-
sociated with inhomogeneous deformation. Experim-
ental observation of the lamellae of human bone
specimens subjected to stress in cantilever bending has
been done by Tischendorf (1951). Displacements at the
boundaries between lamellae were noted, and were
found to increase with time following the application
of load ; however the time scale associated with this
motion was not specified.

DISCUSSION

The contributions of several physical processes to
viscoelastic response in bone in compression and in shear
have been plotted in Fig. 1. The loss tangent in bone in
shear is typically ~10~2 over the domain 0.1-100 Hz
(Lakes et al, 1979). Homogeneous thermoelastic
coupling, as well as fluid flow effects (to first order),
contributes nothing to losses in shear. Inhomogeneous
thermoelastic effects, in contrast, could result in
measurable losses, provided that the resolution in the
experimental apparatus is adequate. Relaxation spec-
tra obtained from the torsional viscoelastic data
presented in Part 1 are suggestive of a possible role of
inhomogeneous thermoelasticity as a contributing
mechanism for losses at times from 0.1 to 10 sec (Figs. 2
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and 3). The differentiation process used to obtain the
spectra from the measured properties has increased the
scatter in the points. The curves were fitted by eye,
since there was no a priori reason to prefer a particular
analytical form. Despite the scatter, the spectrum in
Fig. 2 does not appear to be monotonically increasing
with log t; rather, there appear to be variations in
slope, or ‘humps’ in the curve. The ‘humps’ in the
relaxation spectra for human bone (Fig. 2) at ~9 sec,
0.3sec and 0.02sec would correspond to inhomo-
geneity sizes of 560, 103 and 27 um, respectively, if they
were caused by this mechanism. There is some un-
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certainty in these values, since the specific heat of
apatite was used, rather than that for bone. The
560 ym dimension is larger than that of a typical
osteon by a factor of about 2.5. The 103 um dimension
may be associated with thermal diffusion between the
inner lamellae of an osteon and the material within its
Haversian canal. The 27 ym dimension is larger than
that of typical lamellae by a factor of approximately 4.
Although the lamellae are about 7.5 um thick (Frost,
1963), Frasca (1974) has suggested that the relevant
structural unit may be several times thicker. Specifi-
cally, fibers in groups of several adjacent lamellae were
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Fig. 2. Comparison of relaxation spectra for wet human bone, specimens 5 and 6 (Lakes et al., 1979) in simple
torsion; T = 37°C. First approximation from relaxation and dynamic data. @ Human tibial bone, specimen
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Fig. 3. Comparison of relaxation spectra for wet bovine bone, specimens 7, 8 and 9 (Lakes et al., 1979) in
simple torsion; T = 37°C (first approximation). @Small strain. O Large strain.
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observed in scanning electron micrographs to have
similar orientations, even in ‘intermediate’ osteons
postulated to have alternating fiber orientations by
Ascenzi and Bonucci (1966). Now ‘humps’ are not
discernible in the spectra for bovine bone shown in
Fig. 3. It is not clear whether any should be seen, since
to the authors’ knowledge, no data are available
concerning the variation in stiffness among laminae in
bovine plexiform bone. It must be recognized that the
losses in question are quite small and that the calcu-
lation of spectra entails a certain amount of error. As a
result, the spectra are ‘noisy’; therefore a definitive
assignment of mechanisms to the loss in this portion of
the time domain cannot as yet be made. Predicted
losses in compression for fluid-flow effects can be
significant, particularly for large specimens ; however,
no relevant experimental results are presently avail-
able. Loss resulting from piezoelectric-like coupling in
dry bone at low frequencies is entirely negligible.
Sufficient data are not presently available to assess the
losses in wet bone over the full frequency spectrum,
due to this effect.

Viscoelastic losses resulting from interfacial (e.g.
cement line) motion and from molecular modes in
collagen have not been evaluated theoretically. Al-
though some experimental evidence exists which in-
dicates that interlamellar displacements occur over a
time-scale which the eye can see, no conclusions can be
drawn concerning the resulting relaxation strength.
Further experimentation carried out by one of us
(R.S.L.), on transient properties of bone over very long
times, has shown that extremely large viscoelastic
effects occur in bone loaded for extended periods, and
that cement-line displacements occur in such
specimens.

The observation that collagen alone exhibits visco-
elastic behavior is suggestive of a possible role for
molecular motions in the collagen phase of bone in
determining bone’s viscoelastic response. Since most
investigators of this behavior in collagen have used
material (e.g. rat-tail tendon) which has a structure
different from that of bone collagen, the application of
such results to the present problem is far from
straightforward.

Molecular motions which result in viscoelasticity in
polar polymers have been investigated by dielectric
relaxation experiments. For wet bone, ionic con-
duction and interfacial polarization appear to dom-
inate the dielectric behavior (Lakes et al, 1977).
Therefore, an alternative approach, such as nuclear
magnetic resonance, may be more useful in the expe-
rimental investigation of molecular motions in
collagen.
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APPENDIX A
to Piezoelectric and Dielectric
Relaxation

Rewriting the constitutive equation (5) and substituting
E; = (i/k{1)Dy,

Mechanical Loss due

ik*
Dy = a;dYy + Eskfy =C’ijd1ij+”kT,£Dh (A-1})
11
or
ik¥ i(ky, — ik}
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(A-2)
D, = io;d¥;tan 6%, (A-3)
where tan 69 = k7,/k}; is the dielectric loss tangent. Now
since dD;/dt = —wa;d};tand¥, the following can be
written:
dD At ot
J Big 4o J————m’ T (anTo dr.  (A-4)
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The real part of the above expression is the electrical work
W done in one cycle of sinusoidal deformation. For

simplicity, letting ij = 23, kl =23 to remove the implied
summations,
n635(dhs — d13s)

’
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Now the mechanical work done in one cycle of deformation is

W J‘ g J‘Zx/w dEij de
o = o,,de; = 0; .
mech 7 head ¥} o ) dr

one
cycle

(A-6)

For a lossy solid, stress and strain are related via the complex
compliance

S?}kl = S;jkl - iS;’:[kb

so that for
o = a° e, (A-7)
&y = [S;jkl - iSQIjkz]Uzl g, (A-8)
Then,
Wmech = no?jo'zIS;}kl. (A-9)

For the shearing siresses considered above, and in a principal
coordinate system,

(A-10)
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Comparing this with equation (A-5), the electrical contri-
bution to the mechanical loss compliance AS” may be written
12 _ 11%3
AS}35 = —2——tan
Ky

. (A-11)

Now if the piezoelectric-like coupling is weak, then the
storage compliance S’ is essentially unchanged, so that

3 12

Mech 123 — d123t 50 A-12

Atan 355 = — = anoyi (A-12)
1189323

represents the piezoelectric-like contribution to the mechani-
cal loss for the geometry under consideration.

Note added in proof — Experimental evidence for in-
homogeneous motion at the cement lines as a dominant
mechanism for long term time-dependent deformation in
bone has been published recently by one of us (R.S.L.): Lakes,
R.S. and Saha, S. (1979) Cement line motion in bone. Science,
N.Y. 204, 501-503.







