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Abstract — A constitutive equation is proposed to characterize the viscoelastic properties of wet human
compact bone measured in torsion at body temperature. The equation is developed, using a spectrum of

relaxation times,

He) = []og T

3L STST,
T <1y, T>T

called the ‘triangle’ spectrum. The transient and dynamic viscoelastic moduli are derived from this.
Applications of this distribution to other viscoelastic data as well as to dielectric systems, are discussed.
Nonlinear effects observed in bone are described using the first two terms of a multiple-integral expansion.
The dynamic properties of two types of nonlinear solid are obtained from constitutive equations based on
transients, and applications to bone mechanics are discussed.

INTRODUCTION

An enormous amount of research has been done in
recent years into the physical properties of human
tissues, in particular into their mechanical properties.
Prior to a successful theoretical treatment of bio-
mechanical problems, a mathematical description of
the relation between stress and strain for the tissue in
question must be available. However, many experi-
menters in the past have not attempted to formulate
such descriptions, possibly because their data covered
only small segments of the time, frequency and strain
domains.

In the first paper of this series (Lakes et al, 1979},
measurements of the torsional dynamic and relaxation
properties of cortical bone have been reported. These
experiments were performed on wet human and
bovine bone at body temperature, over wide intervals
in time, frequency and strain. The present study has
two objectives: the first is to formulate a constitutive
equation characterizing these data. In developing this
equation, a distribution of relaxation times is obtained,
which appears not to have been treated previously.
The second objective is to ascertain what are the
measureable viscoelastic functions associated with this
spectrum.

* Received 22 August 1977.

+ A portion of this paper is based on part of a dissertation
submitted by R. S. Lakes, while an N.IH. Predoctoral
Trainee, in partial fulfillment of the requirements for the
Ph.D. in Physics at Rensselaer Polytechnic Institute.

1 This will be referred to henceforth as Part 1.
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Presently available data for human bone suggest
that, to a good approximation, the time-dependent
and strain-dependent aspects of the viscoelastic re-
sponse may be dealt with separately. Therefore, for
simplicity, the material in the following two sections is
discussed within the framework of linear viscoelastic
theory. Although the language of mechanical re-
laxation is used, the results are equally applicable to
relaxation in linear dielectric, magnetic or piezoelectric
systems.

RELAXATION SPECTRA

Phenomena such as mechanical, dielectric and mag-
netic relaxation are often described by means of a
spectrum of relaxation times. In terms of the symbols
commonly used for viscoelasticity in shear, the re-
laxation spectrum H(t) is related to the measured
viscoelastic functions by the following:

G(t) = Ge + r H(z)e"*dlogt )

© 0)21'2
G'(a)) = Ge + [‘ H(I)md log T (2)
Jm® -

* w1
G”((D) = J\ H(T) W d 10g T, (3)

where G(t) is the relaxation modulus, G'(w) is the
dynamic storage modulus, G”(w) is the dynamic loss
modulus and Ge = ,ll.n; G(r). These integrals may be

inverted with some difficulty to obtain the spectrum
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from the measured quantities; however, in practice,
approximations are generally used. The role of the
spectrum in the structure of viscoelasticity theory is
treated by Gross (1953).

For the case in which the spectrum is arbitrarily

. . H

sharp [ie. a delta function, # = AG d(t —1,)] the
obtained (the

following are so-called Debye

equations):
G(t) = Ge + AG - ¢~ @)

" - DTy
G'(w) = AG T+ ol premes 6)

Such expressions are obtained theoretically for situ-
ations in which there is a single characteristic rate at
which the system in question readjusts itself to equilib-
rium, ie. a single relaxation time. Experimentally
measured quantities generally have a more gradual
time or frequency dependence than is predicted by the
Debye equations.

Various empirical distributions of relaxation times
have been compiled by Gross (1953). For example, the
‘box distribution’

H(x) =[l ETET ] ™)

Blty.t2] 0 7 > T3 T<T

has been found to be useful in the description of
polymeric solids (Tobolsky, 1950) and soft tissues
(Fung, 1972). The measured viscoelastic quantities
corresponding to the box spectrum may be expressed
in terms of well-known functions:

G(t) = Ge + [Ei(~t/r,) - Ei(—t/7,)] (8)

Blry.t5]
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where Ei(x) is the well-known and extensively tabu-
lated exponential-integral function (see e.g. Lowan,
1940) and the subscript B[7,,t,] denotes the two time
parameters in the box spectrum. A plot of equations
(7)-(10) is given in Fig, 1, assuming that [7,,7,] =
[1072,10%]. Now, provided that t, » 7,, the box
distribution gives rise to a loss G” which is essentially
constant in the middle of the domain, while G'(w) and
G(1) decrease linearly with log1/w and log1, re-
spectively:~For 152 1,7 the “measurable functions
corresponding to different spectra do not differ
dramatically.

A ‘wedge’ distribution (which is wedge-shaped in a
log—log plot)

H(t) = [T

was introduced and analyzed by Tobolsky (1960) for
the description of the glass—rubber transition of
polyisobutylene.

The lognormal distribution

-2 g, STtT<LT, ] (11)

0 t>1, <1

b 2
H(t) = —e ¥,
n

z=log(t/r,)  (12)

was originally introduced by Weichert (1893) and
developed further by Nowick and Berry (1961). Here
T, is the time at which the spectrum peaks, and 1/b
defines its width. Nowick and Berry assert that this
spectrum has a theoretical rather than a purely
empirical basis, since a given relaxation mechanism is
likely to operate in a range of atomic environments
distributed in a Gaussian fashion about some mean
value. While there may be some Justification for this, it
should be noted that there are many situations in
which an asymmetric loss peak (ie. G” vs log w) is
observed; such cases cannot be treated using the
lognormal spectrum. The dynamic and static moduli

G'(@) = Ge + 1/2 log 1 + w3 ©) corresponding to this distribution cannot be expressed
Bity.t2) 1+ w?t? as a finite combination of well-known functions;
G"(w) = (tan" ‘w1, — tan~lwr,) (10) however, Nowick and Berry provide tables obtained
Blt1.t2) z 1 by numerical methods.
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Fig. 1. Relaxation and dynamic moduli corresponding to the box spectrum H(r)
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THE TRIANGLE SPECTRUM

Motivation

Experimental measurement of the stress—relaxation
behavior of human compact bone in torsion gives rise
to the results which cannot be readily modeled using
only previously published spectra such as those de-
scribed above. The slope of the relaxation curve is seen
to increase in magnitude with the logarithm of time.
The relaxation curve, further, is much broader than
would be expected if the spectrum contained a single
relaxation time. This suggests that the corresponding
relaxation spectrum increases with log  also. There-
fore, the dynamic and relaxation functions corres-
ponding to the ‘triangle spectrum’

He) = [log T

Tr1.72] 0 T> Ty

1, <1T<T1,

] (13)
1<

are germane to this treatment and are developed in
Appendix A.

APPLICATION TO BONE

A number of relaxation spectra and their associated
linear viscoelastic response functions have been exam-
ined. In order to formulate a constitutive equation, the
objective is to find a spectrum such that the cor-
responding G(t), G'(w) and G"(w) fit the experimental
results. A first step in doing this is to obtain an
approximate spectrum for the region of ‘small’ strain
using the approximations

dG(1)

G/I
dlogt|,-: )

2
H) = - ;. H@==

w=1/t

(Ferry, 1970). The resulting curve is then fitted with
empirical spectra for which the associated measured
functions are known, and the parameters varied until a
close approximation to the observed data can be
obtained. The spectrum thus obtained is

H(7)

= 0.00318H(r) + 0.006H(x)
std T[1,108} B{10‘5.102]
+ 0.002H(z) +0.0048(1—0.2)r, (14)

B[1075,1073]

where the times are in seconds and G = 0.590 X

10°Ib/in.2 = 4.068 GN/M?. The corresponding re-
laxation function is
Golt
‘—0(—) = 0.00318G(t) + 0.006G()
std T(1.108]) B[10’5.102]
+ 0.002G(t) 40004602 £ 069. (15)

B[1075,1077]
The third term in each of these expressions contributes
to the loss modulus above 100 Hz. While this region
was not studied in the present experiments, other data
obtained using dry canine radial bone (Thompson,

1971) indicated that the torsional loss tangent in the
domain 370-2500 Hz lies between 0.016 and 0.019.
Although wet human bone would not necessarily
behave in the same way, these results must suffice as a
first approximation until more data are available. An
increase in the loss tangent for human bone above
100Hz is also suggested by the results of Jow-
temperature experiments upon human bone below
100 Hz (described earlier in Lakes et al., 1979). Since
bone is thermorheologically complex, a stronger state-
ment than this cannot be justified.

Now the nonlinearities observed in the present
study of the torsional response of bone are primarily of
a strain-dependent type. Such effects can be described
by an equation of nonlinear superposition which is
therefore proposed to describe this response:

a(t) = Jt {G[t—1,&(1)] — Ge}—g—idt + Ge-e. (16)

An equation similar to this has been used to describe
the behavior of soft tissue by Fung (1972) and is also of
use in describing synthetic polymers. Since the re-
laxation curves obtained for human bone in the
present experiments are parallel within experimental
error, the kernel may be separated

G(t',g) = Go(t') - Ale). (17)
For the present data
A(e) = a;, — a; g @’ (18)

where a; = 1.055, a, = 007, a5 = 550. The kernel in
the constitutive equation (16) becomes

G(t,e) = {0.00318G(t) + 0.006G(¢)

T[1.105) B{10~5.102]

+ 0.002G(t)

B{10°3.1073]

+0.692)[a, — aze” @Gy

+ 0,004 ¢™"02

(19)

Equations (16) and (19) are supported by experimental
data in the domains 10~3<t<10%sec, 34x107°<
¢ < 1.7 x 1073, While it is likely that these equations
are valid for smaller strains than the above minimum, a
breakdown of the formulation is to be expected at
larger strains, since no provision is made for yield or
fracture behavior.

Nonlinear equations more general than equation
(16) have been proposed to account for non-
superposable behavior observed in polymers. For
example, Green and Rivlin (1957) have obtained a
multiple-integral series expansion relating the stress to
the history of the displacement gradients. In one
dimension, for small strains, this may be written (Ward
and Onat, 1963)

a(t) = f Go(t——‘c)gdr + J J‘

de d
x =2 —8~dtldt2 + o
dr, dr,

Gy(t—1,t—13)

(20)

Although this expression is general in the sense that
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arbitrary nonlinear effects are describable by it, it has
proven to be unwieldy, since the determination of the
kernel functions G necessary to describe even ‘simple’
nonlinear behavior involves an enormous number of
experiments. Pipkin and Rogers (1968) have devised
an alternative series representation in which the first
kernel is completely determined by a set of single-step
experiments, the second kernel by two-step experi-
ments, etc. This series may be written

w=[ BB E,

e Oe dt
y ‘7R1[5(T1),t~rx] 5R2[8(Tz),f—‘fz]
de de
de 1

dg
— = dr.d . R
><dr1 dr, e+ +n!f f

y OR, [e(ry), t —1] _ ORn[e(r,),t—1,]

de O¢

de de

- ——dr,...d 21
X d'l'l dT,, Ty Ty + ( )

The kernels may also be expressed as follows

OR, JR, 0R,
— = - =G tc.

de o de  Oe v ele

This formulation has the advantage that a truncation
containing the first few terms generally approximates
the behavior of real materials better than a cor-
responding truncation of the Green—Rivlin series. The
first term of equation (21) is equivalent to the non-
linear superposition equation (16), while the first term
of equation (20) is simply the Boltzmann superposition
integral.

To detect deviations from nonlinear superposition
in the behavior of a material, transient experiments
using a single step-function are inadequate; more
complex strain histories must be used. For example, a
‘relaxation and recovery’ experiment in which a pulse
strain history

&(t) = I};O

is applied to a material obeying equation (21), yields
the following stress response for ¢ > fy:
o(t) = [Go(t, 0) — Golt—1,,60)]e0

=[Gyt —ty,60; to, 80) + Gy(t,e0; t—14,80)

= Gy(t=ty,80; t—11,80) — Gy(t, 605 t, &o)]

O<t<ty ] @)

t <0, t>1,

2

X ;—6 - higher order terms. (23)

Determination of the higher order kernels is possible
using multi-step strain-histories; generally, a jarge
number of experiments is necessary. The recovery
behavior for human bone as measured in Part I
deviates from what would be expected if nonlinear
superposition were valid, by less than 2%. These
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deviations occurred at the largest strains and longest
times used in the experiments. One possible form for
the kernel G, which would describe this is

Gl[t—fls 8(71), t—-‘tz’ 8(1‘2)]
— 0,37 Llog(t—71+ Dlog(t 1, + 1]

el—2(11+t2)+1
x tanh|t, — 1.

24)

No experimental evidence was seen that bone is not a
fading-memory material at the strains used. Kinder
and Sternstein (1976) have shown that for a fading-
memory material, the higher-order terms in equation
(21) generate only transient stress responses, when the
strain history consists of a single step function, i.e. the
strain is constant. Therefore, the above expression has
been constructed so as to be asymptotic to zero in time.
Data which could be used to ascertain the kernels G,
and higher were not taken,

The preceding has been confined to a one-
dimensional treatment of the torsional behavior of
compact bone. In a three-dimensional analysis, the
anisotropy of bone must be taken into account. The
simplest constitutive equation which includes anisot-
ropy is that for an anisotropic elastic solid:

25)

Using ultrasonic techniques, the elements of the modu-
lus tensor Ciju have been determined by Lang (1969)
for bovine bone and by Yoon and Katz (1976) for
human bone (see Table 1). For a linearly viscoelastic
anisotropic solid, the appropriate equation is

o) = J"

while for solids obeying nonlinear superposition,

a;(t) = J‘t

Observe that the kernel obtained for bone in equation
(20) corresponds to the tensor element Ci323(t, £53)
Equations (26) and (27) contain no coupling be-
tween the rate at which one element of stress o relaxes
and those elements of strain ¢,, for which Ciju is zero.
Evidence of coupled relaxation kinetics has been
found, however, in a number of polymers. Sternstein
and Ho (1972) have presented an extension of linear

iy = Cipbu-

dg
Cumlt—1) " dr, (26)

deg
Cipalt—~1, Eu)‘d—m dr. (27
T

Table 1. Elements of the elastic modulus tensor for compact
bone (units in GN/m?)

Elastic constant Yoonand Katz Lang
(1976) (1969)
Reduced Full Dried human Fresh bovine
notation notation femur phalanx
Cyy Ciinx 234 19.7
Cis Ci3as 325 334
Cyy 2323 8.71 8.20
Ci, 1122 9.06 10.2
Cis 1133 9.11 112
Ces 1212 717 3.80
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viscoelasticity theory to describe such behavior in
isotropic solids. For an anisotropic, nonlinear solid
with kinetic coupling, equation (27) may be rewritten :

t deg
a;(t) = J‘ Ciult—1, &> Pemn) ] *dT’ddT» (28)

where the function @ must be chosen in such a way as
to preserve the material’s symmetry, if any. For
example, @ can depend only upon the three strain
invariants for an isotropic solid.

In the biaxial experiments upon bone described in
Part I, the torsional viscoelastic behavior of bone was
observed in the presence of an axial tensile stress. The
appropriate special case of the above equation must
therefore be written implicitly:

' de;s
o23(t) = f Cazas(t—1, 323,033)—(*11—(11 (29)
The effect of a superposed tensile stress is relatively
small ; the kernel G, in equation (19) may be modified
as follows to describe the increase in the loss tangent at
high frequencies:

Glt,e)
58 _10.00318G(t)  + 0.006G(?)
std T[1.105] B[10'5.102]
+ 0.002G(t) + 0,004 7102
B[10‘5.10‘3] o
+ 0.0013G(t) 22 0.692] - A(e)-
Bio-4.10-2 17.2

(30)
The slowing of the torsional recovery by an axial stress
is described by the following correction to the kernel
G, appearing in equation (24):

[log(t—t, + Dlog(t -1, + NP
el-‘Z(n +12) + 1

033
tanh|t, — 14+—= 31
x tan |Tz '51‘[ + 17.2} (31)

where g3 is in units of MN/m?.

G, =037

DYNAMIC BEHAVIOR OF NONLINEAR SOLIDS

It is of interest to examine the response to sinusoidal
excitation of nonlinear solids which obey different
types of constitutive equations. For linear materials,
an analysis of the material response to oscillatory
strain or stress histories leads to the introduction of the
complex moduli or compliances (see e.g. Gross, 1953;
Ferry, 1970). The stress response of solids obeying
equation (16) (nonlinear superposition) and solids
obeying equation (20) (Green-Rivlin series) to dy-
namic strain histories is treated in the following
analysis.

Consider first (Lakes, 1975) a solid describable by
the nonlinear superposition integral 16 in which the
kernel G(z, &) is separable: G(t, &) = Golt) + A()B(e). If
the strain is given by &(1) = &sinwr, then equation
{16) becomes
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a(t)/eo= G'(@)sin ot + G"{w)cos wt
+ A'(w)B(gy sin i) + A"(w)B(gg cos wt), (32)

where
Gw)=o [Go(t') — Ge]sinwt’ dt’ + Ge
Jo
G'(w) =w [Go(t') — Ge]cos wt’ dt’
JO
=]
Aw)=w A(t)sin wt’ At
Jo
* oo
A'(w)=w A(t)cos wt' dt'.
JO

Specific forms for equation (32) can be obtained by
expanding B as is detailed in Appendix B.

Now the response of the solid to a strain history
containing a single frequency component, gt) =
a, sin w;t, can be obtained as a special case of the
development in Appendix B by lettinga = a,, w = @;.
The single frequency strain is then seen to generate
harmonics (integer multiples of the original frequency
®,) in the stress. It is shown that an analysis of these
harmonics can enable one to calculate G v, ... o)
however, a test involving a single frequency com-
ponent in applied strain is inadequate to obtain
G,(w, ... w,). Multi-frequency histories must be used
to obtain these quantities; from these, the original
kernel functions in equation (20) may be extracted by
means of a suitable transformation procedure.

The results of these analyses may be summarized as
follows.

(1) For both the ‘Green—Rivlin solid’ and a solid
obeying nonlinear superposition, the stress response to
a sinusoidally varying strain contains the original
frequency, harmonics at integer multiples of this
frequency, and a constant or ‘D.C. stress.

(2) If the response o(t)/& is invariant to the sign of
€0, as must be the case in shear for an isotropic solid or
in torsion about the symmetry axis of an axisymmetric
solid, all terms in the representation of a(t) containing
odd powers of ¢, vanish, so that all even harmonics as
well as the static ‘D.C. stress also vanish.

(3) The response in tension/compression is not
restricted in this way and may contain all harmonics
plus a constant stress.

(4) In musical language, these statements may be
expressed as follows: vibrated in shear with strain
history equivalent to the tone of the flute, the solid
responds with a stress corresponding to the tone of the
clarinet, while in compression it could respond with
the tone of the saxophone.

(5) The response of the two types of solid is
indistingunishable if single frequency excitation is used.
A strain excitation containing several frequencies will
generate “interactions’ in the Green—Rivlin solid ;
however, the stress response of the solid obeying
nonlinear superposition will be equivalent to the sum
of the responses to the individual frequencies; no
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interactions occur in this case.

(6) The dynamic response at the driving frequency
G'(w) can be less strain-dependent (for identical
maximum strain levels and for ¢ = 1/w) than the
relaxation response G().

This last phenomenon has been observed in bone
and is described earlier in Lakes et al. (1979). The
constitutive equation developed in the present study is
capable of correctly modeling this effect, as shown in
Fig. 2. Harmonic generation in bone is also described
earlier (Lakes et al., 1979); this effect is relatively weak
at the strains used in the experiments. Excessive

IZF

dyn/cm?

€
'

E, (N, H(r)x 10”

harmonic generation in bone in vivo, were it to occur,
could create problems resulting from the deleterious
effect of high frequency vibration on the articular
cartilage (Radin et al,, 1973).

APPLICATION TO OTHER SYSTEMS

Materials other than bone appear to behave in a
fashion consistent with the triangle distribution of
relaxation times developed in Appendix A. For ex-
ample, Tobolsky (1960) reports a relaxation curve for
polyisobutylene which he fits with a box spectrum

(Fig. 3). Clearly, in the six decades of time-scale to the”

tog

r,T, hr

Fig. 3. Young’s relaxation modulus E,(t) for polyisobutylene (after Tobolsky). Dotted line: experimental
modulus and caleulated spectrum H(z). Solid line: assumed box spectrum and calculated modulus.




Viscoelastic properties of wet cortical bon

left, the behavior will be approximated much more
closely by a triangle spectrum. Other examples, includ-
ing dielectric relaxation data, may be found in the
literature.

DISCUSSION

A constitutive equation has been developed to
describe the torsional behavior of wet human compact
bone at body temperature. The relaxation spectrum
used for this purpose describes the behavior of a
number of polymers as well. Although this equation
models the experimental data fairly accurately, it has
some limitations. First, it can be expected to be valid
only in a finite domain of time-scale and strain-level;
specifically, it contains no information regarding yield
and fracture. Second, the kernel, equation (19), repre-
sents only one element of the viscoelastic modulus
tensor, which, for high frequencies, contains five
independent elements. Finally, the nonlinear, non-
superposable response of bone to complex straining
histories, is not included. Although many investi-
gations of the viscoelastic and ultimate properties of
bone have been previously reported, a complete
characterization of the behavior of wet bone at body
temperature is not available. The experiments nec-
essary to obtain this remain a subject for future
investigations.
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APPENDIX A

Derivation of the Functions G(t), G'(w), G"(w)

The relationship between the spectrum H(r) and the
relaxation modulus G(t) given in equation (1) is equivalent to

©

H(T) —tjt
G(t)=Ge+f — e (A-1)

4

If H(z) is the triangle spectrum given by equation (13), then

2 Jo
G(t) = f 8T -t dr + Ge. (A-2)
LN T
Letting y = t/1,
Y2 e—}'
Glt) = f € log?dy + Ge. (A-3)
n Y t
Integrating by parts,
y2 y2 El —
G(t) = log%Ei(—y) - J’ El=) 4y + Ge
n y1
¥z y2 E
—log Ei(~y)| + J EO) 4y & Ge, (A-4)
t y1 yi y
where —Ei(—y) = [Pe %/x.dx is the well  known
exponential-integral function and E,(y) = —Ei(— iy

> 0]. Now equation (A-4) may be rewritten as follows:

+ J’“’ E(») dy
_ J‘m Ei(y)
y2 y

These integrals cannot be reduced to a finite combination of
elementary functions. However, Kourganoff (1963) has eva-

y2

G(t) = log % Ei(—y)

»

dy + Ge. (A-5)
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luated them in connection with an astrophysical problem. He
defines the function E)(y) as follows :

EP(y) = r B
y x

and proves that

nz © (_l)nyn
(2) =} 24 e 7 &
O =Hlogy +92 + 5+ T2 (ag)

where y is Euler’s constant (y = 0.5572...).
Recalling that y = /1, equation (A-5) becomes

1 t 1 t
G(t) =log—Eil—)— log—Ei| —
Tley,t1] T2 T2 Ty T1

t t i
+ E‘f’(—) - E‘f’<~> +Ge. (A-7)
Ty T2

The dynamic storage modulus G'(w) is given in terms of the
spectrum H(z) by

G'(o) = s L EE dt+G (A-8)
=) Ldara o §

For H(r) equal to the triangle spectrum 13, and, for the
present, dropping Ge

5] (1)2
G'(w) = J. tlogt PRy (A-9)

i 1+ 0’
Integrating by parts and observing that

ftan"wrdr—rtan"lwr—ilo <i 2)
= gl—+71°)
2w w

G'(w) =| ot tan "' wr(logt — 1)

1
+%log <~ + r2>:’
w

where I(w,7) = [ tan~! wr log 7 dr. This integral cannot be
expressed as a finite combination of elementary functions.
Expanding the arctangent

> (A-10)

T

T2
— wl(w,1)
T1

(w.[)zu 1

tan~!wr = o )
an"lor= Y ( )2k+1

k=0
[wr<1] (A-11)
1
@k + 1)(wr)?*T
[wr>1], (A-12)

tan~! @7 = g - Y (=1)
k=0

the following are obtained

1Z % i_im 1
I>_f[2 kgo( b W]logrdr
[or>1] (A-13)

B © : k(wr)2k+1]
I. —f[kgo( 1) Ee s log = dz.

[wr <1] (A-14)

Now with the bounded convergence theorem (James, 1966)
the summations and integrations may be interchanged

I. ={ﬁ(rlogr—z)— T (=1
2 k=0

1
x mflog r(wr)‘(z"“’dr}. (A-15)

RoODERIC S. LAKES and J. LAWRENCE KATZ

But
a - logz 1
f(wr) logtdt = 0™ “[m = m:,
n#0;
1 1 2
f—ogtdr=(ogt) . (A-16)
T 2w
So
] 2
I, =gwr(logt— 1) — (ngr)

Z (—D¥wt)"*[logz 1
—_— |+ >1]. (A-17
TE Tk | tae) [tz e
Similarly,
© 2+ [ 1
o § ol e 1
2 k+1 |2k+2 @k+2)
[wr < 1]. (A-18)

Now if w is such that wt, < 1 and T, > 1,

G'(w) = [cur tan~! wr(logt — 1)

T[ry,12]
1 =
+ Llog <—2 + 1:2)]!
) “

oy I (w,7) (A-19)

=1/w

1w }
=14
If, however, wrt, < 1, the expression in the { } brackets
becomes {I . (w,7)[:2,,}, while if wt, > 1, the corresponding
expression is {1 (w,7)|iZ,,}.

Now considering the dynamic loss modulus G"(w) in terms of
the spectrum H(z), equation (3) becomes

“ H(z) wt
G'(w) = S e
o T 1+ w*

- {L(w,r)

(A-20)

Again, letting H(r) be the triangle spectrum and integrating
by parts,

G(w) [logttan™!wr] - [K(w,7)]| (A-21)
Tley,t2] _ =1, =1,
where
“tan~! wr
K(w,7)=w ——dr. (A-22)
ol o

Recalling equations (A-11) and (A-12) and proceeding in the
same manner as for G,

T @© (_I)k
K, =—1 —
5 gt +k§0 @k + 1)2(wr)? 1

[wr>1] (A-23)

© (_ 1)k(w1)2k+ 1

=2 a1y e T

(A-24)

No difficulty is encountered in integrating through wr = 1in
this case, so

G"(w)=[log 7 tan~! wr] - [K(w)]’ . (A-25)
Tlt1,72] =1 =1
The relaxation and dynamic function H| (r) and H(z)
Ti1, 10%] T[1,10¢]

obtained using these relations from the triangle spectra and
plotted in Figs. 4 and 5, respectively.
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Fig. 4. Relaxation and dynamic moduli corresponding to the triangle spectrum H(z) . Arbitrary units of

T[1,103%]
stress on ordinate. Arbitrary units of time on abscissa.
APPENDIX B 5 BY0) ]}
h -
Development of a Nonlinear Constitutive Equation 8 4l
in the Frequency Domain - , 1 B(O)
Expanding B in equation (32) as a power series, eliminating +sin 20ty 47(@) 21 fo
powers of the trigonometric functions by means of multiple- 1 B®(0)
angle identities, and collecting terms, the following is 4= & }}
obtained: 4 3!
ot) _ . . 3 BO) , , 1 BO) 1 B¥0)
—;0— = smwt{G(w) + A(w)[B(O) +Z 780 + cos 2wt < A'(w) S AETR ST
65 B0
- ()sg+--- . .[1 BO 3 B0) |
16 4! + AWz ——&+3 e+
: 2 1 2 3!
+ cos wt{ G"(w) + A"(@)| B(0) 1 BO)
0S —— —— . .
@ @ 4 21 ° + sin 3wt{...} + higher order terms, (B-1)
60—
a0l G'(w)
E
T
= - G(t)
=
)
20
G"(w)
o ' | |
0 T w0 o o 1©° 10t @ 100 0
T, h/w
Fig. 5. Relaxation and dynamic moduli corresponding to the triangle spectrum H(r) . Arbitrary units of

(1,108}
stress on ordinate. Arbitrary units of time on abscissa.
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d"B
de"

. dB
where B=-— etc.; B"=
de

Now if the solid in question is subjected to a strain history
containing many frequency components
N
gty=1¢y Y a,sinw,t,
n=1

the stress response may be written

oty ¥

—_—= {stinw,,t
n=1

&
1
+ w, f [G(t—1,6)— G, Jcos w,t dra,,}. (B-2)

This is the sum of the responses to the individual frequency
components; no interaction between these components
occurs.

Consider now a solid describable by the Green—Rivlin
series (equation 20). The frequency response of this type of
solid has been treated by Lockett and Gurtin (1964); salient
portions of their analysis are discussed below.

In linear viscoelasticity theory, the problem of dynamic
response can be analyzed with the aid of the complex, one
sided Fourier transform of the stress-relaxation function

©

Gi(t) = Gl(w)zf G, (s)e " ds.

]

For the treatment of the nonlinear solid, a multiple transform
may be defined analogously
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G(w,,wz,...w,)zf f J‘ Go(51,82,---Sp)
0 V] 0

X e—i(w,s;+w;s;+--»+w,s,,) dSl d2 dS (B'3)
B« RN

This may be used to obtain from equation (20) a nonlinear
constitutive equation in the frequency domain.
The problem of determining the solid’s stress response to
an oscillatory strain history
N
et)= Y a,sinwyt
n=1
may be approached more directly by substituting the above
history in equation (20) and making use of trigonometric
identities (see also Lakes, 1975). The first and second terms of
equation (20), called 5,(t) and a,(t), become

N
0,() = Y. a,[G(w,)sin w,t + G"(w,)cos w,t], (B-4)
a=1
1 X ~
3 Y ana,w,0,[Re Gy (w,, ,)c08(w, + w,)t
np=1
= IMG,(w,, w,)t sin(w, + w,)t

+ Re G, (w,, —w,)cos(w, — wy)t

6,(t) =
— IM G, (w,, —w,)sin(w, — wp)t]. (B-5)

The sums in the terms of order three and higher grow rapidly
in complexity with the order-of the term.




